【題目】速度分別為100km/hakm/h0a100)的兩車分別從相距s千米的兩地同時(shí)出發(fā),沿同一方向勻速前行.行駛一段時(shí)間后,其中一車按原速度原路返回,直到與另一車相遇時(shí)兩車停止.在此過程中,兩車之間的距離ykm)與行駛時(shí)間th)之間的函數(shù)關(guān)系如圖所示.下列說法:①a60;②b2;③cb+;④若s60,則b.其中說法正確的是( 。

A.①②③B.②③④C.①②④D.①③④

【答案】D

【解析】

①利用速度=路程÷時(shí)間可求出兩車的速度差,結(jié)合快車的速度即可求出a值,結(jié)論①正確;②利用時(shí)間=兩車之間的距離÷兩車速度差可得出b值,由s不確定可得出b值不確定,結(jié)論②不正確;③利用兩車第二次相遇的時(shí)間=快車轉(zhuǎn)向時(shí)的時(shí)間+兩車之間的距離÷兩車的速度之和可得出c值,結(jié)論③正確;④由②的結(jié)論結(jié)合s=60可得出b值,結(jié)論④正確.綜上,此題得解.

①兩車的速度之差為80÷(b+2b)=40km/h),

a1004060,結(jié)論①正確;

②兩車第一次相遇所需時(shí)間h),

s的值不確定,

b值不確定,結(jié)論②不正確;

③兩車第二次相遇時(shí)間為b+2+b+h),

cb+,結(jié)論③正確;

④∵b,s60,

b,結(jié)論④正確.

故選D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ADBC上的高,tanB=cos∠DAC.

(1)求證:AC=BD;

2)若sinC=BC=12,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩城市之間開通了動(dòng)車組高速列車。已知每隔2h有一列速度相同的動(dòng)車組列車從甲城開往乙城。如圖,OA是第一列動(dòng)車組列車離開甲城的路程s(km)與運(yùn)行時(shí)間t(h)的函數(shù)圖象,BC是一列從乙城開往甲城的普通快車距甲城的路程s(km)與運(yùn)行時(shí)間t(h)的函數(shù)圖象。請(qǐng)根據(jù)圖中的信息,解答下列問題:

(1)從圖象看,普通快車發(fā)車時(shí)間比第一列動(dòng)車組列車發(fā)車時(shí)間___1h(”),點(diǎn)B的縱坐標(biāo)600的實(shí)際意義是___;

(2)請(qǐng)直接在圖中畫出第二列動(dòng)車組列車離開甲城的路程s(km)與時(shí)間t(h)的函數(shù)圖象;

(3)若普通快車的速度為100km/h,

①求BC的表達(dá)式,并寫出自變量的取值范圍;

②第二列動(dòng)車組列車出發(fā)多長(zhǎng)時(shí)間后與普通快車相遇?

③請(qǐng)直接寫出這列普通快車在行駛途中與迎面而來的相鄰兩列動(dòng)車組列車相遇的時(shí)間間隔.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)和形是數(shù)學(xué)的兩個(gè)主要研究對(duì)象,我們經(jīng)常運(yùn)用數(shù)形結(jié)合、數(shù)形轉(zhuǎn)化的方法解決一些數(shù)學(xué)問題.下面我們來探究由數(shù)思形,以形助數(shù)的方法在解決代數(shù)問題中的應(yīng)用.

探究一:求不等式|x1|2的解集

1)探究|x1|的幾何意義

如圖①,在以O為原點(diǎn)的數(shù)軸上,設(shè)點(diǎn)A對(duì)應(yīng)的數(shù)是x1,有絕對(duì)值的定義可知,點(diǎn)A與點(diǎn)O的距離為

|x1|,可記為AO=|x1|.將線段AO向右平移1個(gè)單位得到線段AB,此時(shí)點(diǎn)A對(duì)應(yīng)的數(shù)是x,點(diǎn)B對(duì)應(yīng)的數(shù)是1.因?yàn)?/span>AB=AO,所以AB=|x1|,因此,|x1|的幾何意義可以理解為數(shù)軸上x所對(duì)應(yīng)的點(diǎn)A1所對(duì)應(yīng)的點(diǎn)B之間的距離AB

2)求方程|x1|=2的解

因?yàn)閿?shù)軸上3和﹣1所對(duì)應(yīng)的點(diǎn)與1所對(duì)應(yīng)的點(diǎn)之間的距離都為2,所以方程的解為3,﹣1

3)求不等式|x1|2的解集

因?yàn)?/span>|x1|表示數(shù)軸上x所對(duì)應(yīng)的點(diǎn)與1所對(duì)應(yīng)的點(diǎn)之間的距離,所以求不等式解集就轉(zhuǎn)化為求這個(gè)距離小于2的點(diǎn)對(duì)應(yīng)的數(shù)x的范圍.請(qǐng)寫出這個(gè)解集:_________________________________

探究二:探究的幾何意義

1)探究的幾何意義

如圖③,在直角坐標(biāo)系中,設(shè)點(diǎn)M的坐標(biāo)為(x,y),過MMPx軸于P,作MQy軸于Q,則P點(diǎn)坐標(biāo)為(x,0),Q點(diǎn)坐標(biāo)為(0,y),OP=|x|,OQ=|y|,在RtOPM中,PM=OQ=|y|,則,因此,的幾何意義可以理解為點(diǎn)Mx,y)與點(diǎn)O0,0)之間的距離MO

2)探究的幾何意義

如圖④,在直角坐標(biāo)系中,設(shè)點(diǎn)A的坐標(biāo)為(x1,y5),由探究二(1)可知,,將線段AO先向右平移1個(gè)單位,再向上平移5個(gè)單位,得到線段AB,此時(shí)點(diǎn)A的坐標(biāo)為(xy),點(diǎn)B的坐標(biāo)為(1,5),因?yàn)?/span>AB=AO,所以,因此的幾何意義可以理解為點(diǎn)Axy)與點(diǎn)B1,5)之間的距離AB

3)探究的幾何意義,根據(jù)探究二(2)所得的結(jié)論,請(qǐng)寫出的幾何意義可以理解為:________________

4的幾何意義可以理解為:________________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABCD,在AB,CD內(nèi)有一條折線EGF

1)如圖①,過點(diǎn)GGHAB,求證:∠BEG+DFG=∠EGF;

2)如圖②,已知∠BEG的平分線與∠DFG的平分線相交于點(diǎn)Q,請(qǐng)?zhí)骄俊?/span>EGF與∠EQF的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一家蔬菜公司收購(gòu)到某種綠色蔬菜200噸,準(zhǔn)備加工后進(jìn)行銷售,銷售后獲利的情況如下表所示:

銷售方式

粗加工后銷售

精加工后銷售

每噸獲利(元)

500

800

已知該公司的加工能力是:每天能精加工5噸或粗加工15噸,但兩種加工不能同時(shí)進(jìn)行.受季節(jié)等條件的限制,公司必須在一定時(shí)間內(nèi)將這批蔬菜全部加工后銷售完.

1)如果要求20天剛好加工完200噸蔬菜,則公司應(yīng)安排幾天精加工,幾天粗加工?

2)如果先進(jìn)行精加工,然后進(jìn)行粗加工.

①試求出銷售利潤(rùn)W元與精加工的蔬菜噸數(shù)m之間的函數(shù)關(guān)系式;

②若要求在不超過16天的時(shí)間內(nèi),將200噸蔬菜全部加工完后進(jìn)行銷售,則加工這批蔬菜最多獲得多少利潤(rùn)?此時(shí)如何分配加工時(shí)間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線交于,,,則的度數(shù)為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形紙片ABCD中,AB=6,BC=10,點(diǎn)ECD上,將BCE沿BE折疊,點(diǎn)C恰落在邊AD上的點(diǎn)F處;點(diǎn)GAF上,將ABG沿BG折疊,點(diǎn)A恰落在線段BF上的點(diǎn)H處,有下列結(jié)論:

①∠EBG=45°;DEF∽△ABG;SABG=SFGH;AG+DF=FG.

其中正確的是__.(把所有正確結(jié)論的序號(hào)都選上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,,點(diǎn)是線段上一點(diǎn)(不與端點(diǎn)重合),分別平分于點(diǎn)、.

1)請(qǐng)說明:;

2)當(dāng)點(diǎn)上移動(dòng)時(shí),請(qǐng)寫出之間滿足的數(shù)量關(guān)系為______;

3)若,則當(dāng)點(diǎn)移動(dòng)到使得時(shí),請(qǐng)直接寫出______(用含的代數(shù)式表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案