【題目】如圖,在正方形網(wǎng)格圖中建立一直角坐標(biāo)系,一條圓弧經(jīng)過(guò)網(wǎng)格點(diǎn)

A(0,2),B(4,2)C(6,0),解答下列問(wèn)題:

(1)請(qǐng)?jiān)趫D中確定該圓弧所在圓心D點(diǎn)的位置,則D點(diǎn)坐標(biāo)為_(kāi)__ ___;

(2)連結(jié)AD,CD,求D的半徑(結(jié)果保留根號(hào));

(3)若把扇形DAC圍成一個(gè)圓錐,求圍成圓錐的底面半徑(結(jié)果保留根號(hào)).

【答案】(1) D點(diǎn)坐標(biāo)為(2,-2);(2)2;(3).

【解析】

(1)由圓心在ABBC的垂直平分線上,可得出D點(diǎn)的位置;

(2)過(guò)點(diǎn)DDEy軸,交y軸于點(diǎn)E,在RtADE中,利用勾股定理可求得AD的長(zhǎng),即可得出半徑;

(3) 求得弧長(zhǎng),除以即為圓錐的底面半徑.

(1)如圖1,作出線段ABBC的垂直平分線的交點(diǎn)即為所求的D點(diǎn),

可知D點(diǎn)坐標(biāo)為(2,-2),

(2)如圖2,過(guò)點(diǎn)DDEy軸,交y軸于點(diǎn)E,在RtADE中,AE=2+2=4,DE=2,由勾股定理可求得AD=2,即⊙D的半徑為2;

(3)如圖2,連接AC,在RtAOC中,AO=2,OC=6,由勾股定理可求得AC=2

ADC中,AD2+CD2=40=AC2,

∴∠ADC=90°,

∴設(shè)圓錐的底面半徑為r,,

,

r=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+cx軸于A、B兩點(diǎn)(AB的左側(cè)),且OA=3,OB=1,與y軸交于C(0,3),拋物線的頂點(diǎn)坐標(biāo)為D(﹣1,4).

(1)求A、B兩點(diǎn)的坐標(biāo);

(2)求拋物線的解析式;

(3)過(guò)點(diǎn)D作直線DEy軸,交x軸于點(diǎn)E,點(diǎn)P是拋物線上B、D兩點(diǎn)間的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與B、D兩點(diǎn)重合),PA、PB與直線DE分別交于點(diǎn)F、G,當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),EF+EG是否為定值?若是,試求出該定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一座拋物線型拱橋,已知橋下在正常水位AB時(shí),水面寬8m,水位上升3m就達(dá)到警戒水位CD,這時(shí)水面寬4m,若洪水到來(lái)時(shí),水位以每小時(shí)0.2m的速度上升,求水過(guò)警戒水位后幾小時(shí)淹到橋拱頂.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC中,AB=AC,∠BAC=120,AD⊥BC,且AD=AB.

(1)如圖1,DE⊥AB,DF⊥AC,垂足分別為點(diǎn)E,F(xiàn),求證:AE+AF=AD

(2)如圖2,如果∠EDF=60,且∠EDF兩邊分別交邊AB,AC于點(diǎn)E,F(xiàn),那么線段AE,AF,AD之間有怎樣的數(shù)量關(guān)系?并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,每個(gè)小正方形的邊長(zhǎng)都為1,四邊形ABCD的頂點(diǎn)都在小正方形的頂點(diǎn)上.

1)求四邊形ABCD的面積;

2)∠BCD是直角嗎?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題情境:

在平面直角坐標(biāo)系中有不重合的兩點(diǎn)和點(diǎn),小明在學(xué)習(xí)中發(fā)現(xiàn),若,則軸,且線段的長(zhǎng)度為;若,則軸,且線段的長(zhǎng)度為;

(應(yīng)用):

1)若點(diǎn)、,則軸,的長(zhǎng)度為__________

2)若點(diǎn),且軸,且,則點(diǎn)的坐標(biāo)為__________

(拓展):

我們規(guī)定:平面直角坐標(biāo)系中任意不重合的兩點(diǎn),之間的折線距離為;例如:圖1中,點(diǎn)與點(diǎn)之間的折線距離為

解決下列問(wèn)題:

1)如圖1,已知,若,則__________;

2)如圖2,已知,,若,則__________

3)如圖3,已知的,點(diǎn)軸上,且三角形的面積為3,則__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】農(nóng)八師石河子市某中學(xué)初三(1)班的學(xué)生,在一次數(shù)學(xué)活動(dòng)課中,來(lái)到市游憩廣場(chǎng),測(cè)量坐落在廣場(chǎng)中心的王震將軍的銅像高度,已知銅像底座的高為3.5m.某小組的實(shí)習(xí)報(bào)告如下請(qǐng)你計(jì)算出銅像的高(結(jié)果精確到0.1m)

實(shí)習(xí)報(bào)告2003925

題目1

測(cè)量底部可以到達(dá)的銅像高

測(cè)

數(shù)

據(jù)

測(cè)量項(xiàng)目

第一次

第二次

平均值

BD的長(zhǎng)

12.3m

11.7m

測(cè)傾器CD的高

1.32m

1.28m

傾斜角

α=30°56'

α=31°4'

計(jì)

結(jié)果

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】本題滿分8分一個(gè)不透明的口袋中裝有2個(gè)紅球記為紅球1、紅球2、1個(gè)白球、1個(gè)黑球,這些球除顏色外都相同,將球搖勻.

1從中任意摸出1個(gè)球,恰好摸到紅球的概率是 ;

2先從中任意摸出1個(gè)球,再?gòu)挠嘞碌?個(gè)球中任意摸出1個(gè)球,請(qǐng)用列舉法畫(huà)樹(shù)狀圖或列表求兩次都摸到紅球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小李是某服裝廠的一名工人,負(fù)責(zé)加工A,B兩種型號(hào)服裝,他每月的工作時(shí)間為22天,月收入由底薪和計(jì)件工資兩部分組成,其中底薪900元,加工A型服裝1件可得20元,加工B型服裝1件可得12元.已知小李每天可加工A型服裝4件或B型服裝8件,設(shè)他每月加工A型服裝的時(shí)間為x天,月收入為y元.

(1) 求y與x的函數(shù)關(guān)系式;

(2) 根據(jù)服裝廠要求,小李每月加工A型服裝數(shù)量應(yīng)不少于B型服裝數(shù)量的,那么他的月收入最高能達(dá)到多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案