【題目】農(nóng)八師石河子市某中學(xué)初三(1)班的學(xué)生,在一次數(shù)學(xué)活動課中,來到市游憩廣場,測量坐落在廣場中心的王震將軍的銅像高度,已知銅像底座的高為3.5m.某小組的實(shí)習(xí)報(bào)告如下請你計(jì)算出銅像的高(結(jié)果精確到0.1m)

實(shí)習(xí)報(bào)告2003925

題目1

測量底部可以到達(dá)的銅像高

數(shù)

據(jù)

測量項(xiàng)目

第一次

第二次

平均值

BD的長

12.3m

11.7m

測傾器CD的高

1.32m

1.28m

傾斜角

α=30°56'

α=31°4'

計(jì)

結(jié)果

【答案】5.0m.

【解析】

根據(jù)表中所給數(shù)據(jù)分別計(jì)算出BD、CD的長,再根據(jù)銳角三角函數(shù)的定義即可求出AE的長

∵兩次測得BD的長分別是:12.3m,11.7m∴其平均值為=12m;

∵兩次測得CD的高為:1.32m,1.28m,∴其平均值為=1.30m

∵兩次測得其傾斜角分別是:30°56′,31°4′,∴其平均值為=31°,設(shè)AE=xm,由測量知∠ACE=31°,CE=BD=12m.在Rt△AEC,tan∠ACE=,∴x=12tan31°=12×0.6=7.2m,∴AF=AEEF=7.2﹣(3.5﹣1.3)=5.0m,故銅像的高為:5.0m

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊥BC,DC⊥BC,EBC上一點(diǎn),使得AE⊥DE;

(1)求證:△ABE∽△ECD;

(2)AB=4,AE=BC=5,求CD的長;

(3)當(dāng)△AED∽△ECD時,請寫出線段AD、AB、CD之間數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,,,于點(diǎn)E,于點(diǎn)D,BEAD相交于F

求證:;

,AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形網(wǎng)格圖中建立一直角坐標(biāo)系,一條圓弧經(jīng)過網(wǎng)格點(diǎn)

A(0,2),B(4,2)C(6,0),解答下列問題:

(1)請?jiān)趫D中確定該圓弧所在圓心D點(diǎn)的位置,則D點(diǎn)坐標(biāo)為___ ___;

(2)連結(jié)AD,CD,求D的半徑(結(jié)果保留根號);

(3)若把扇形DAC圍成一個圓錐,求圍成圓錐的底面半徑(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果批發(fā)商銷售每箱進(jìn)價為40元的柑橘,物價部門規(guī)定每箱售價不得高于55元;市場調(diào)查發(fā)現(xiàn),若每箱以45元的價格銷售,平均每天銷售105箱;每箱以50元的價格銷售,平均每天銷售90箱.假定每天銷售量y(箱)與銷售價x(元/箱)之間滿足一次函數(shù)關(guān)系式.

1)求平均每天銷售量y(箱)與銷售價x(元/箱)之間的函數(shù)關(guān)系式;

2)求該批發(fā)商平均每天的銷售利潤w(元)與銷售價x(元/箱)之間的函數(shù)關(guān)系式;

3)當(dāng)每箱蘋果的銷售價為多少元時,可以獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】猜想與證明:

觀察下列各個等式的規(guī)律:

第一個等式:

第二個等式:

第三個等式:

第四個等式:

請用上述等式反映出的規(guī)律猜想并證明:

1)直接寫出第五個等式;

2)問題解決:猜想第 n 個等式(n1,用 n 的代數(shù)式表示),并證明你猜想的等式是正確的

3)一個容器裝有11水,按照如下要求把水倒出:第1次倒出 水,第2次倒出的水量是L水的,第3次倒出的水量是水的,第4次倒出的水量是水的,……第次倒出的水量是L水的,…按照這種倒水的方法,求倒n次水倒出的總水量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在中,,,是過點(diǎn)的一條直線,且、的異側(cè),,.

1)求證:.

2)若將直線繞點(diǎn)旋轉(zhuǎn)到圖②的位置時(),其余條件不變,問的關(guān)系如何?請予以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AD=6,DC=8,矩形EFGH的三個頂點(diǎn)E、G、H分別在矩形ABCD的邊ABCD的邊ABCD、DA上,AH=2,連接CF.當(dāng)CGF是直角三角形時,線段AE的長為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直角三角形的鐵片ABC的兩條直角邊BC,AC的長分別為3cm和4cm,如圖所示分別采用⑴,⑵兩種方法,剪去一塊正方形鐵片,為了使剪去正方形鐵片后剩下的邊角料較少,試比較哪一種剪法較為合理,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案