【題目】問題情境:
在平面直角坐標系中有不重合的兩點和點,小明在學習中發(fā)現(xiàn),若,則軸,且線段的長度為;若,則軸,且線段的長度為;
(應用):
(1)若點、,則軸,的長度為__________.
(2)若點,且軸,且,則點的坐標為__________.
(拓展):
我們規(guī)定:平面直角坐標系中任意不重合的兩點,之間的折線距離為;例如:圖1中,點與點之間的折線距離為.
解決下列問題:
(1)如圖1,已知,若,則__________;
(2)如圖2,已知,,若,則__________.
(3)如圖3,已知的,點在軸上,且三角形的面積為3,則__________.
【答案】【應用】:(1)3;(2)(1,2)或(1,2);【拓展】:(1)=5;(2)2或2;(3)4或8
【解析】
(1)根據(jù)若y1=y2,則AB∥x軸,且線段AB的長度為|x1x2|,代入數(shù)據(jù)即可得出結(jié)論;
(2)由CD∥y軸,可設點D的坐標為(1,m),根據(jù)CD=2即可得出|0m|=2,解之即可得出結(jié)論;
(1)根據(jù)兩點之間的折線距離公式,代入數(shù)據(jù)即可得出結(jié)論;
(2)根據(jù)兩點之間的折線距離公式結(jié)合d(E,H)=3,即可得出關(guān)于t的含絕對值符號的一元一次方程,解之即可得出結(jié)論;
(3)由點Q在x軸上,可設點Q的坐標為(x,0),根據(jù)三角形的面積公式結(jié)合三角形OPQ的面積為3即可求出x的值,再利用兩點之間的折線距離公式即可得出結(jié)論.
解:【應用】:
(1)AB的長度為|12|=3.
故答案為:3.
(2)由CD∥y軸,可設點D的坐標為(1,m),
∵CD=2,
∴|0m|=2,解得:m=±2,
∴點D的坐標為(1,2)或(1,2).
故答案為:(1,2)或(1,2).
【拓展】:
(1)d(E,F)=|2(1)|+|0(2)|=5.
故答案為:=5.
(2)∵E(2,0),H(1,t),d(E,H)=3,
∴|21|+|0t|=3,解得:t=±2.
故答案為:2或2.
(3)由點Q在x軸上,可設點Q的坐標為(x,0),
∵三角形OPQ的面積為3,
∴ ,解得:x=±2.
當點Q的坐標為(2,0)時,d(P,Q)=|32|+|30|=4;
當點Q的坐標為(2,0)時,d(P,Q)=|3(2)|+|30|=8.
故答案為:4或8.
科目:初中數(shù)學 來源: 題型:
【題目】某風景區(qū)集體門票的收費標準是:20人以內(nèi)(含20人),每人25元;超過20人,超過的部分,每人10元.
(1)寫出應收門票費y(元)與游覽人數(shù)x(人)之間的函數(shù)解析式;
(2)利用(1)中的函數(shù)解析式計算,某班54名學生要去該風景區(qū)游覽,購買門票一共需要花多少錢?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知是等邊三角形,點是直線上一點,以為一邊在的右側(cè)作等邊.
(1)如圖①,點在線段上移動時,直接寫出和的大小關(guān)系;
(2)如圖②,點在線段的延長線上移動時,猜想的大小是否發(fā)生變化.若不變請求出其大;若變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在中,于E,,D是AE上的一點,且,連接BD,CD.
試判斷BD與AC的位置關(guān)系和數(shù)量關(guān)系,并說明理由;
如圖2,若將繞點E旋轉(zhuǎn)一定的角度后,試判斷BD與AC的位置關(guān)系和數(shù)量關(guān)系是否發(fā)生變化,并說明理由;
如圖3,若將中的等腰直角三角形都換成等邊三角形,其他條件不變.
試猜想BD與AC的數(shù)量關(guān)系,請直接寫出結(jié)論;
你能求出BD與AC的夾角度數(shù)嗎?如果能,請直接寫出夾角度數(shù);如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形網(wǎng)格圖中建立一直角坐標系,一條圓弧經(jīng)過網(wǎng)格點
A(0,2),B(4,2)C(6,0),解答下列問題:
(1)請在圖中確定該圓弧所在圓心D點的位置,則D點坐標為___ ___;
(2)連結(jié)AD,CD,求⊙D的半徑(結(jié)果保留根號);
(3)若把扇形DAC圍成一個圓錐,求圍成圓錐的底面半徑(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】A、B兩種型號的機器加工同一種零件,已知A型機器比B型機器每小時多加工20個零件,A型機器加工400個零件所用時間與B型機器加工300個零件所用時間相同.A型機器每小時加工零件的個數(shù)_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】猜想與證明:
觀察下列各個等式的規(guī)律:
第一個等式:
第二個等式:
第三個等式:
第四個等式:
請用上述等式反映出的規(guī)律猜想并證明:
(1)直接寫出第五個等式;
(2)問題解決:猜想第 n 個等式(n≥1,用 n 的代數(shù)式表示),并證明你猜想的等式是正確的
(3)一個容器裝有11水,按照如下要求把水倒出:第1次倒出 水,第2次倒出的水量是L水的,第3次倒出的水量是水的,第4次倒出的水量是水的,……第次倒出的水量是L水的,…按照這種倒水的方法,求倒n次水倒出的總水量.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AC是⊙O的直徑,BC交O于點D,E是弧CD的中點,連接AE交BC于點F,∠ABC=2∠EAC.
(1)求證:AB是⊙O的切線;
(2)若 tanB=,BD=6,求CF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《九章算術(shù)》是我國古代數(shù)學名著,書中有下列問題:“今有勾五步,股十二步,問勾中容方幾何?”其意思為“今有直角三角形,勾(短直角邊)長為5步,股(長直角邊)長為12步,問該直角三角形能容納的正方形邊長最大是多少步?”該問題的答案是________步.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com