【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,其對稱軸為直線x=﹣1,給出下列結論:(1)b2>4ac; (2)abc>0;(3)2a+b=0;(4)a+b+c>0;(5)a﹣b+c<0.其中正確的結論有(  )

A.2個
B.3個
C.4個
D.5個

【答案】B
【解析】解:(1)拋物線與x軸有2個交點,則b2﹣4ac>0,則b2>4ac,故(1)正確;
(2)拋物線開口方向向上,則a>0.
拋物線與y軸交于負半軸,則c<0.
對稱軸在y軸的左側,a、b同號,即b>0.
所以abc<0.故(2)錯誤;
(3)對稱軸x=﹣=﹣1,則b﹣2a=0,故(3)錯誤;
(4)如圖,當x=1時,y>0,即a+b+c>0,故(4)正確;
(5)如圖,當x=﹣時,y<0,即a﹣b+c<0.故(5)正確;
綜上所述,正確的個數(shù)是3個.
故選:B.

【考點精析】本題主要考查了二次函數(shù)圖象以及系數(shù)a、b、c的關系的相關知識點,需要掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時,拋物線開口向上; a<0時,拋物線開口向下b與對稱軸有關:對稱軸為x=-b/2a;c表示拋物線與y軸的交點坐標:(0,c)才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在直線上順次取 AB,C 三點,分別以 AB,BC 為邊長在直線的同側作正三角形, 作得兩個正三角形的另一頂點分別為 D,E

(1)如圖①,連結 CD,AE,求證:CDAE;

(2)如圖②,若 AB1BC2,求 DE 的長;

(3)如圖③,將圖②中的正三角形 BCE B 點作適當?shù)男D,連結 AE,若有 DE2BE2AE2,試求∠DEB 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)計算:tan260°+4sin30°cos45°
(2)解方程:x2﹣4x+3=0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,AD=CD,∠DAB=∠ACB=90°,過點D作DE⊥AC,垂足為F,DE與AB相交于點E.
(1)求證:ABAF=CBCD;
(2)已知AB=15cm,BC=9cm,P是線段DE上的動點.設DP=x cm,梯形BCDP的面積為ycm2
①求y關于x的函數(shù)關系式.
②y是否存在最大值?若有求出這個最大值,若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在Rt△ABC中,∠C=90°,若sinA= , 則cosB的值是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為1,AC,BD是對角線,將△DCB繞著點D順時針旋轉45°得到△DGH,HGAB于點E,連接DEAC于點F,連接FG.則下列結論:

①四邊形AEGF是菱形;②△HED的面積是1﹣③∠AFG=112.5°;BC+FG=.其中正確的結論是(  )

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點A(3,4),點B(﹣1,1),在x軸上有兩動點E、F,且EF=1,線段EFx軸上平移,當四邊形ABEF的周長取得最小值時,點E的坐標為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, 中, ,, 的平分線與的垂直平分線交于點,將沿 (, )折疊,點與點恰好重合,則的度數(shù)是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司保安部去商店購買同一品牌的應急燈和手電筒,查看定價后發(fā)現(xiàn),購買一個應急燈和5個手電筒共需50元,購買3個應急燈和2個手電筒共需85元.

(1)求出該品牌應急燈、手電筒的定價分別是多少元?

(2)經(jīng)商談,商店給予該公司購買一個該品牌應急燈贈送一個該品牌手電筒的優(yōu)惠,如果該公司需要手電筒的個數(shù)是應急燈個數(shù)的2倍還多8個,且該公司購買應急燈和手電筒的總費用不超過670元,那么該公司最多可購買多少個該品牌應急燈?

查看答案和解析>>

同步練習冊答案