【題目】我們定義:等腰三角形中底邊與腰的比叫作底角的鄰對(duì)(can).如圖①,在△ABC中,AB=AC,底角∠B的鄰對(duì)記作canB,這時(shí)canB=.容易知道一個(gè)角的大小與這個(gè)角的鄰對(duì)值是一一對(duì)應(yīng)的,根據(jù)上述角的鄰對(duì)的定義,解下列問題:
(1) . can30°=______ __;
(2) . 如圖②,已知在△ABC中,AB=AC,canB=,S△ABC=24,求△ABC的周長.
【答案】(1);(2)18
【解析】試題分析:(1)過點(diǎn)A作AD⊥BC于點(diǎn)D,根據(jù)∠B=30°,可得出BD=AB,結(jié)合等腰三角形的性質(zhì)可得出BC=AB,繼而得出canB;
(2)過點(diǎn)A作AE⊥BC于點(diǎn)E,根據(jù)canB=,設(shè)BC=8x,AB=5x,再由S△ABC=24,可得出x的值,繼而求出周長.
試題解析:解:(1)過點(diǎn)A作AD⊥BC于點(diǎn)D,∵∠B=30°,∴cos∠B==,∴BD=AB,∵△ABC是等腰三角形,∴BC=2BD=AB,故can30°==;
(2)過點(diǎn)A作AE⊥BC于點(diǎn)E,∵canB=,則可設(shè)BC=8x,AB=5x,∴AE==3x,∵S△ABC=24,∴BC×AE=12x2=24,解得:x=,故AB=AC=,BC=,從而可得△ABC的周長為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠MON=90,A是∠MON內(nèi)部的一點(diǎn),過點(diǎn)A作AB⊥ON,垂點(diǎn)為點(diǎn)B,AB=3厘米,OB=4厘米,動(dòng)點(diǎn)E、F同時(shí)從O點(diǎn)出發(fā),點(diǎn)E以1.5厘米/秒的速度沿ON方向運(yùn)動(dòng),點(diǎn)F以2厘米/秒的速度沿OM方向運(yùn)動(dòng),EF與OA交于點(diǎn)C,連接AE,當(dāng)點(diǎn)E到達(dá)點(diǎn)B時(shí),點(diǎn)F隨之停止運(yùn)動(dòng)。設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0)。
(1)當(dāng)t=1秒時(shí),ΔEOF與ΔABO是否相似?請(qǐng)說明理由。
(2)在運(yùn)動(dòng)過程中,不論t取何值時(shí),總有EF⊥OA,為什么?
(3)連接AF,在運(yùn)動(dòng)過程中,是否存在某一時(shí)刻t,使得SΔAEF=S四邊形ABOF ?若存在,請(qǐng)求出此時(shí)t的值;若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,三角形記作在方格中,方格紙中的每個(gè)小方格都是邊長為1個(gè)單位的正方形,先將向上平移3個(gè)單位長度,再向右平移2個(gè)單位長度,得到.
三個(gè)頂點(diǎn)的坐標(biāo)分別是:______,______,______,
在圖中畫出;
平移后的三個(gè)頂點(diǎn)坐標(biāo)分別為:______、______、______;
若y軸有一點(diǎn)P,使與面積相等,則P點(diǎn)的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲和乙騎摩托車分別從某大道上相距6000米的A、B兩地同時(shí)出發(fā),相向而行,勻速行駛一段時(shí)間后,到達(dá)C地的甲發(fā)現(xiàn)摩托車出了故障,立即停下電話通知乙,乙接到電話后立即以出發(fā)時(shí)速度的倍向C地勻速騎行,到達(dá)C地后,用5分鐘修好了甲摩托車,然后乙仍以出發(fā)時(shí)速度的倍勻速向終點(diǎn)A地騎行,甲仍以原來速度向B地勻速騎行,2分鐘后,發(fā)現(xiàn)乙的一件維修工具落在了自己車上,于是立即掉頭并以原速度倍的速度勻速返回(此時(shí)乙未到達(dá)A地).在這個(gè)過程中,兩人相距的路程y(米)與甲出發(fā)的時(shí)間x(分)之間的關(guān)系如圖所示(甲與乙打、接電話及掉頭時(shí)間忽略不計(jì))則當(dāng)乙到達(dá)A地時(shí),甲離A地的距離為 ________米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形中,順次連接四邊形各邊中點(diǎn),得到四邊形,再順次連接四邊形各邊中點(diǎn),得到四邊形...如此進(jìn)行下去,得到四邊形則下列結(jié)論正確的個(gè)數(shù)有( )
①四邊形是矩形;②四邊形是菱形;③四邊形的周長為; ④四邊形的面積是.
A.個(gè)B.個(gè)C.個(gè)D.個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點(diǎn)M和N,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點(diǎn)P,連結(jié)AP并延長交BC于點(diǎn)D. 下列結(jié)論:①AD是∠BAC的平分線;②點(diǎn)D在AB的垂直平分線上;③∠ADC=60°;④。其中正確的結(jié)論有( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖①,在平行四邊形ABCD中,AB=3cm,BC=5cm,AC⊥AB.△ACD沿AC的方向勻速平移得到△PNM,速度為1cm/s;同時(shí),點(diǎn)Q從點(diǎn)C出發(fā),沿著CB方向勻速移動(dòng),速度為1cm/s;當(dāng)△PNM停止平移時(shí),點(diǎn)Q也停止移動(dòng),如圖②.設(shè)移動(dòng)時(shí)間為t(s)(0<t<4).連接PQ、MQ、MC.解答下列問題:
(1)當(dāng)t為何值時(shí),PQ∥AB?
(2)當(dāng)t=3時(shí),求△QMC的面積;
(3)是否存在某一時(shí)刻t,使PQ⊥MQ?若存在,求出t的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點(diǎn).
(1)求證:△ACE≌△BCD;
(2)若AD=5,BD=12,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的大致圖象如圖,關(guān)于該二次函數(shù),下列說法錯(cuò)誤的是( )
A. 函數(shù)有最小值
B. 對(duì)稱軸是直線x=
C. 當(dāng)x<,y隨x的增大而減小
D. 當(dāng)﹣1<x<2時(shí),y>0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com