【題目】如圖,△ABD和△BCD都是等邊三角形紙片,AB=2,將△ABD紙片翻折,使點(diǎn)A落在CD的中點(diǎn)E處,折痕為FG,點(diǎn)F、G分別在邊AB、AD上.
(1)求證:△FBE是直角三角形;
(2)求BF的長(zhǎng).
【答案】(1)見解析;(2).
【解析】
(1)連接BE、AE交FG于點(diǎn)O,利用等邊三角形的性質(zhì)和直角三角形的判定解答即可;
(2)根據(jù)勾股定理和翻折的性質(zhì)解答即可.
(1)連接BE、AE交FG于點(diǎn)O,
等邊△BCD中,E為CD中點(diǎn),
∴DBE=30°,BE⊥CD,
∵∠ABD=60°,
∴∠FBE=90°,
即△FBE是直角三角形;
(2)在Rt△EBC中,CE=1,BC=2,
∴BE2=BC2﹣CE2=22﹣12=3,
∵△AGF翻折至△EGF,
∴AF=EF,
在Rt△EBF中,設(shè)BF=x,則AF=EF=2﹣x,
∴EF2=BF2+BE2,即(2﹣x)2=x2+3,
解得:x=,
即BF=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探索規(guī)律,觀察下面算式,解答問題.
1+3 =4 =22;
1+3+5=9=32;
1+3+5+7=16=42;
1+3+5+7+9=25=52;
(1)請(qǐng)猜想1+3+5+7+9+…+19=
(2)請(qǐng)猜想1+3+5+7+9+…+(2n-1)+(2n +1)+(2n +3)=
(3)試計(jì)算:101 +103+…+197 +199.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),點(diǎn)B(0,12),點(diǎn)A在第一象限內(nèi),△AOB為等腰三角形,∠BAO=90°,AB=AO,AC⊥OB,點(diǎn)D從點(diǎn)B出發(fā),以每秒2個(gè)單位的速度沿y軸向終點(diǎn)O運(yùn)動(dòng),連接DA,過點(diǎn)A作AE⊥AD,射線AE交x軸于點(diǎn)E,連接BE,交線段AC于點(diǎn)F,交線段OA于點(diǎn)G.
(1)請(qǐng)直接寫出A的坐標(biāo);
(2)點(diǎn)D運(yùn)動(dòng)的時(shí)間為t秒時(shí),用含t的代數(shù)式表示△ACD的面積S,并寫出t的取值范圍;
(3)在(2)的條件下,當(dāng)四邊形DAEO的面積等于6S時(shí),求△AGF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程解應(yīng)用題:五蓮縣新瑪特購(gòu)物中心第一次用5000元購(gòu)進(jìn)甲、乙兩種商品,其中乙商品的件數(shù)比甲商品件數(shù)的倍多15件,甲、乙兩種商品的進(jìn)價(jià)和售價(jià)如下表(注:獲利=售價(jià)﹣進(jìn)價(jià))
甲 | 乙 | |
進(jìn)價(jià)(元/件) | 20 | 30 |
售價(jià)(元/件) | 29 | 40 |
(1)新瑪特購(gòu)物中心將第一次購(gòu)進(jìn)的甲、乙兩種商品全部賣完后一共可獲得多少利潤(rùn)?
(2)該購(gòu)物中心第二次以第一次的進(jìn)價(jià)又購(gòu)進(jìn)甲、乙兩種商品,其中甲種商品的件數(shù)不變,乙種商品的件數(shù)是第一次的3倍;甲商品按原價(jià)銷售,乙商品打折銷售,第二次兩種商品都銷售完以后獲得總利潤(rùn)比第一次獲得的總利潤(rùn)多160元,求第二次乙種商品是按原價(jià)打幾折銷售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)當(dāng)我們利用兩種不同的方法計(jì)算同一圖形的面積時(shí),可以得到一個(gè)等式.例如,由圖①,可得等式:(a+2b)(a+b)=a2+3ab+2b2.
(1)由圖②,可得等式:__________________________;
(2)利用(1)中所得到的結(jié)論,解決下面的問題:
已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;
(3)利用圖③中的紙片(足夠多),畫出一種拼圖,使該拼圖可用來驗(yàn)證等式:2a2+5ab+2b2=(2a+b)(a+2b);
(4)琪琪用2張邊長(zhǎng)為a的正方形,3張邊長(zhǎng)為b的正方形,5張邊長(zhǎng)分別為a,b的長(zhǎng)方形紙片重新拼出一個(gè)長(zhǎng)方形,那么該長(zhǎng)方形較長(zhǎng)的一條邊長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用A、B兩種機(jī)器人搬運(yùn)大米,A型機(jī)器人比B型機(jī)器人每小時(shí)多搬運(yùn)20袋大米,A型機(jī)器人搬運(yùn)700袋大米與B型機(jī)器人搬運(yùn)500袋大米所用時(shí)間相等.求A、B型機(jī)器人每小時(shí)分別搬運(yùn)多少袋大米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,D為BC邊上一個(gè)動(dòng)點(diǎn)(D與B、C均不重合),AD=AE,∠DAE=60°,連接CE.
(1)求證:△ABD≌△ACE;
(2)求證:CE平分∠ACF;
(3)若AB=2,當(dāng)四邊形ADCE的周長(zhǎng)取最小值時(shí),求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若點(diǎn)P從點(diǎn)A出發(fā),以每秒2cm的速度沿折線A﹣C﹣B﹣A運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).
(1)若點(diǎn)P在AC上,且滿足PA=PB時(shí),求出此時(shí)t的值;
(2)若點(diǎn)P恰好在∠BAC的角平分線上,求t的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com