【題目】如圖,拋物線,經(jīng)過點(diǎn),,三點(diǎn).
求拋物線的解析式及頂點(diǎn)M的坐標(biāo);
連接AC、MB,P為線段MB上的一個動點(diǎn)(不與點(diǎn)M、B重合),過點(diǎn)P作x軸的垂線PQ,若OQ=a,四邊形ACPQ的面積為s,求a為何值時,面積s最大;
點(diǎn)N是拋物線上第四象限的一個定點(diǎn),坐標(biāo)為 ,過點(diǎn)C作直線軸,動點(diǎn)在直線l上,動點(diǎn)在x軸上,連接PM、PQ、NQ,當(dāng)m為何值時,的和最小,并求出和的最小值.
【答案】(1);M(1,4)
(2)當(dāng),面積最大,最大為.
(3)
【解析】
(1)拋物線過,,可求得解析式;
(2)將用含的代數(shù)式表示,并配方成頂點(diǎn)式求出最大值;
(3)根據(jù)選址造橋模型,將頂點(diǎn)向下平移三個單位得,當(dāng) 在同一條直線上時,取得最小值.
(1)∵拋物線經(jīng)過點(diǎn),,,
∴ 解得
∴=,頂點(diǎn)M的坐標(biāo)為(1,4)
(2)連接AC、MB,P為線段MB上的一個動點(diǎn)(不與點(diǎn)M、B重合),過點(diǎn)P作x軸的垂線PQ.設(shè)P點(diǎn)的坐標(biāo)為 ,如圖所示.
∵P在直線MB上,,,設(shè)直線MB為
解得
直線MB的解析式為,P點(diǎn)坐標(biāo)為
∵,,,
∴,,
∵
整理
∴即當(dāng),面積最大,最大為.
(3)將頂點(diǎn)向下平移三個單位得 ,連接 交軸于點(diǎn),連接.如圖所示,則.
∵,
∴軸,且
∴,四邊形為平行四邊形
∴,有圖知三點(diǎn)共線時,取最小值.
設(shè)直線的解析式為,將點(diǎn),N
求得直線的解析式為,
當(dāng)時,,即,即,
此時過點(diǎn)作軸交延長線與點(diǎn),
在中,,,
∴,
∴,即,
∴當(dāng)時,的最小值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于E,OD⊥BC交⊙O于D,DE交BC于F,點(diǎn)P為CB延長線上的一點(diǎn),延長PE交AC于G,PE=PF
(1)求證:直線PG為⊙O的切線;
(2)求證:GA=GE;
(3)判斷OG與BE的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個頂點(diǎn)坐標(biāo)分別是A(1,1),B(4,1),C(3,3).
(1)將△ABC向下平移5個單位后得到△A1B1C1,請畫出△A1B1C1;
(2)將△ABC繞原點(diǎn)O逆時針旋轉(zhuǎn)90°后得到△A2B2C2,請畫出△A2B2C2;
(3)判斷以O,A1,B為頂點(diǎn)的三角形的形狀.(無須說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)的圖象與坐標(biāo)軸圍成的三角形,叫做此一次函數(shù)的坐標(biāo)三角形.例如,圖中的一次函數(shù)的圖象與x,y軸分別交于點(diǎn)A,B,則△OAB為此函數(shù)的坐標(biāo)三角形.
(1)求函數(shù)y=x+3的坐標(biāo)三角形的三條邊長;
(2)若函數(shù)y=x+b(b為常數(shù))的坐標(biāo)三角形周長為16,求此三角形面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,點(diǎn)在邊上,,射線交于點(diǎn),點(diǎn)從點(diǎn)出發(fā),以每秒個單位長度的速度沿射線方向運(yùn)動,過點(diǎn)作,交射線于點(diǎn),以、為鄰邊作,設(shè)點(diǎn)的運(yùn)動時間為.
(1)線段的長為 (用含的代數(shù)式表示)
(2)求點(diǎn)落在上時的值;
(3)設(shè)與的重疊部分圖形的面積為(平方單位),當(dāng)時,求與之間的函數(shù)關(guān)系式.
(4)當(dāng)時,直接寫出為等腰三角形時的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系 xOy中,反比例函數(shù) y x 0 的圖象經(jīng)過點(diǎn) A2,3 ,直線y ax , y 與反比例函數(shù) y x 0 分別交于點(diǎn) B,C兩點(diǎn).
(1)直接寫出 k 的值 ;
(2)由線段 OB,OC和函數(shù) y x 0 在 B,C 之間的部分圍成的區(qū)域(不含邊界)為 W.
① 當(dāng) A點(diǎn)與 B點(diǎn)重合時,直接寫出區(qū)域 W 內(nèi)的整點(diǎn)個數(shù) ;
② 若區(qū)域 W內(nèi)恰有 8個整點(diǎn),結(jié)合函數(shù)圖象,直接寫出 a的取值范圍 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一個二次函數(shù)圖象上部分點(diǎn)的橫坐標(biāo)與縱坐標(biāo)的對應(yīng)值如表所示:
… | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | … | |
… | 0 | ﹣3 | ﹣4 | ﹣3 | 0 | … |
(1)求這個二次函數(shù)的表達(dá)式;
(2)在給定的平面直角坐標(biāo)系中畫出這個二次函數(shù)的圖象;
(3)當(dāng)時,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在的直角三角形中,,是直角邊所在直線上的一個動點(diǎn),連接,將繞點(diǎn)逆時針旋轉(zhuǎn)到,連接,.
(1)如圖①,當(dāng)點(diǎn)恰好在線段上時,請判斷線段和的數(shù)量關(guān)系,并結(jié)合圖①證明你的結(jié)論;
(2)當(dāng)點(diǎn)不在直線上時,如圖②、圖③,其他條件不變,(1)中結(jié)論是否成立?若成立,請結(jié)合圖②、圖③選擇一個給予證明;若不成立,請直接寫出新的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的對角線AC、BD相交于點(diǎn)O,∠CAB的平分線交BD于點(diǎn)E,交BC于點(diǎn)F.若OE=2,則CF=_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com