【題目】如圖所示,用三種大小不同的5個正方形和一個長方形(陰影部分)拼成長方形ABCD,其中EF=2厘米,最小的正方形的邊長為x厘米.
(1)用含x的代數(shù)式表示FG=________厘米,DG=________厘米.
(2)若長方形ABCD的周長等于52,求x的值
(3)若FG:DG=2:3,求四邊形FGDH(陰影部分)的面積.
【答案】(1)(x+2);(3x-2);(2)3;(3).
【解析】
(1)由圖可知,,GC等于最小正方形的邊長與EF之和;因為最大正方形的邊長是最小正方形邊長的3倍,即為,則;
(2)由圖可知,,,再利用長方形的周長公式列出等式,求解即可得;
(3)根據(jù)題(1)求出的用x表示的FG和DG,代入化簡計算得出x的值,從而得知FG和DG的值,最后利用長方形的面積公式即可得.
(1)由圖可知,,GC等于最小正方形的邊長與EF之和
則
由圖可知,最大正方形的邊長是最小正方形邊長的3倍,即為
則;
(2)由圖可知,,
則長方形ABCD的周長為:
由題意得:,解得:;
(3)由題(1)知,
代入得:
解得:
則
故四邊形FGDH的面積為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點O為直線AB上一點,過點O作射線OC,使∠BOC=112°.將一直角三角板的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.
(1)將圖1中的三角板繞點O逆時針旋轉(zhuǎn)至圖2,使一邊OM在∠BOC的內(nèi)部,且恰好平分∠BOC,問:直線ON是否平分∠AOC?請說明理由;
(2)將圖1中的三角板繞點O按每秒4°的速度沿逆時針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,第t秒時,直線ON恰好平分銳角∠AOC,則t的值為多少?
(3)將圖1中的三角板繞點O順時針旋轉(zhuǎn)至圖3,使ON在∠AOC的內(nèi)部,請?zhí)骄浚骸?/span>AOM與∠NOC之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中, , 是的角平分線,以為圓心, 為半徑作⊙.
()求證: 是⊙的切線.
()已知交⊙于點,延長交⊙于點, ,求的值.
()在()的條件下,設(shè)⊙的半徑為,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,三角形ABC三邊的長分別為AB=m2﹣n2,AC=2mn,BC=m2+n2,其中m、n都是正整數(shù).以AB、AC、BC為邊分別向外畫正方形,面積分別為S1、S2、S3,那么S1、S2、S3之間的數(shù)量關(guān)系為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形紙片ABCD中,E,F分別是AD,BC的中點,沿過點B的直線折疊,使點C落在EF上,落點為N,折痕交CD邊于點M,BM與EF交于點P,再展開.則下列結(jié)論中:①CM=DM;②∠ABN=30°;③AB2=3CM2;④△PMN是等邊三角形.
正確的有( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為積極響應(yīng)“弘揚傳統(tǒng)文化”的號召,某學(xué)校倡導(dǎo)全校1200名學(xué)生進行經(jīng)典詩詞誦背活動,并在活動之后舉辦經(jīng)典詩詞大賽,為了解本次系列活動的持續(xù)效果,學(xué)校團委在活動啟動之初,隨機抽取部分學(xué)生調(diào)查“一周詩詞誦背數(shù)量”,根調(diào)查結(jié)果繪制成的統(tǒng)計圖(部分)如圖所示.
大賽結(jié)束后一個月,再次抽查這部分學(xué)生“一周詩詞誦背數(shù)量”,繪制成統(tǒng)計表
一周詩詞誦背數(shù)量 | 3首 | 4首 | 5首 | 6首 | 7首 | 8首 |
人數(shù) | 10 | 10 | 15 | 40 | 25 | 20 |
請根據(jù)調(diào)查的信息
(1)活動啟動之初學(xué)生“一周詩詞誦背數(shù)量”的中位數(shù)為 ;
(2)估計大賽后一個月該校學(xué)生一周詩詞誦背6首(含6首)以上的人數(shù);
(3)選擇適當(dāng)?shù)慕y(tǒng)計量,從兩個不同的角度分析兩次調(diào)查的相關(guān)數(shù)據(jù),評價該校經(jīng)典詩詞誦背系列活動的效果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一張長方形的紙對折(使寬邊重合,然后再對折),第一次對折,得到一條折痕連同長方形的兩條寬邊共3條等寬線(如圖(1),第二次對折(每次的折痕與上次的折痕保持平行),得到5條等寬線(如圖(2)所示),連續(xù)對折三次后,可以得到9條等寬線(如圖(3所示),對折四次可以得到17條等寬線,如果對折6次,那么可以得到的等寬線條數(shù)是______條.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角坐標系中,直線與反比例函數(shù)的圖象交于A,B兩點,已知A點的縱坐標是2.
(1)求反比例函數(shù)的解析式.
(2)將直線沿x軸向右平移6個單位后,與反比例函數(shù)在第二象限內(nèi)交于點C.動點P在y軸正半軸上運動,當(dāng)線段PA與線段PC之差達到最大時,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在求兩位數(shù)的平方時,可以用“列豎式”的方法進行速算,求解過程如圖1所示.仿照圖1,用“列豎式”的方法計算一個兩位數(shù)的平方,部分過程如圖2所示,若這個兩位數(shù)的個位數(shù)字為a,則這個兩位數(shù)為( 。
A.a﹣50B.a+50C.a﹣20D.a+20
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com