【題目】如圖1在矩形ABCD中,AB6,BC8,BCD沿BD的方向勻速平移得到MGH,速度為1cm/s:同時(shí)點(diǎn)N從點(diǎn)B出發(fā),沿BA方向勻速移動(dòng),速度為1cm/s,當(dāng)點(diǎn)N停止移動(dòng)時(shí),MGH也停止移動(dòng),如圖2,設(shè)移動(dòng)時(shí)間為t0t6),連接MNHB,HN

解答下列問題

1)當(dāng)t為何值時(shí),MNHG?

2)設(shè)四邊形ADMN面積為ycm2),求yt之間的函數(shù)關(guān)系式;

3)是否存在某一時(shí)刻t,使SHBNS四邊形ADMN23?若存在,求出t值:若不存在,請(qǐng)說明理由;

4)是否存在某一時(shí)刻t,使MNHB?若存在,求出t值;若不存在,請(qǐng)說明理由.

【答案】(1);(2);(3)t4,t6(不合題意舍去);(4

【解析】

1)由勾股定理可求BD=10,通過證明BAD∽△BNM,可得,即可求t的值;

2)過點(diǎn)MMEAB于點(diǎn)E,由相似三角形性質(zhì)可得ME= (10t),由S四邊形ADMN=SABD-SBMN,可得yt之間的函數(shù)關(guān)系式;

3)由SHBNS四邊形ADMN=23,可得t2-10t+24=0,即可求t的值;

4)延長ABHG于點(diǎn)F,由“HL”可證RtMNERtHBF,可得BF=EN,即可求t的值.

1)∵四邊形ABCD是矩形

ABCD6,BCAD8,∠A90°

BD10

由平移的性質(zhì)可得:ADHG,且NMHG

MNAD

∴△BAD∽△BNM

;

2)如圖,過點(diǎn)MMEAB于點(diǎn)E,

MEAD

∴△BME∽△BDA

ME= (10t),

S四邊形ADMNSABDSBMN

y24,(0t6

3)∵SHBNS四邊形ADMN23

t210t+240

t4,t6(不合題意舍去)

4)如圖,延長ABHG于點(diǎn)F,

BAMH

∴△BFG∽△MHG

BF

∵△BME∽△BDA

BE

ENBEBN6t,

MEHFMNBH

RtMNERtHBFHL

BFEN

t6t,

t.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象相交于點(diǎn).

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)若定義橫、縱坐標(biāo)均為整數(shù)的點(diǎn)叫做好點(diǎn),則圖中陰影部分區(qū)域內(nèi)(不含邊界)好點(diǎn)的個(gè)數(shù)為________;

(3)請(qǐng)根據(jù)圖象直接寫出不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD、DEFG都是正方形,邊長分別為m、nmn).坐標(biāo)原點(diǎn)OAD的中點(diǎn),A、D、Ey軸上.若二次函數(shù)yax2的圖象過CF兩點(diǎn),則_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】自2016年國慶后,許多高校均投放了使用手機(jī)就可隨用的共享單車.某運(yùn)營商為提高其經(jīng)營的A品牌共享單車的市場(chǎng)占有率,準(zhǔn)備對(duì)收費(fèi)作如下調(diào)整:一天中,同一個(gè)人第一次使用的車費(fèi)按0.5元收取,每增加一次,當(dāng)次車費(fèi)就比上次車費(fèi)減少0.1元,第6次開始,當(dāng)次用車免費(fèi).具體收費(fèi)標(biāo)準(zhǔn)如下:

使用次數(shù)

0

1

2

3

4

5(含5次以上)

累計(jì)車費(fèi)

0

0.5

0.9

1.5

同時(shí),就此收費(fèi)方案隨機(jī)調(diào)查了某高校100名師生在一天中使用A品牌共享單車的意愿,得到如下數(shù)據(jù):

使用次數(shù)

0

1

2

3

4

5

人數(shù)

5

15

10

30

25

15

)寫出的值;

)已知該校有5000名師生,且A品牌共享單車投放該校一天的費(fèi)用為5800元.試估計(jì):收費(fèi)調(diào)整后,此運(yùn)營商在該校投放A品牌共享單車能否獲利? 說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某校教學(xué)樓AB后方有一斜坡,已知斜坡CD的長為12米,坡角α為60°,根據(jù)有關(guān)部門的規(guī)定,∠α≤39°時(shí),才能避免滑坡危險(xiǎn),學(xué)校為了消除安全隱患,決定對(duì)斜坡CD進(jìn)行改造,在保持坡腳C不動(dòng)的情況下,學(xué)校至少要把坡頂D向后水平移動(dòng)多少米才能保證教學(xué)樓的安全?(結(jié)果取整數(shù))

(參考數(shù)據(jù):sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,m,n是一元二次方程x2+4x+3=0的兩個(gè)實(shí)數(shù)根,且|m|<|n|,拋物線y=x2+bx+c的圖象經(jīng)過點(diǎn)Am,0),B(0,n),如圖所示.

(1)求這個(gè)拋物線的解析式;

(2)設(shè)(1)中的拋物線與x軸的另一個(gè)交點(diǎn)為拋物線的頂點(diǎn)為D,求出點(diǎn)C,D的坐標(biāo),并判斷BCD的形狀;

(3)點(diǎn)P是直線BC上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B和點(diǎn)C重合),過點(diǎn)Px軸的垂線,交拋物線于點(diǎn)M,點(diǎn)Q在直線BC上,距離點(diǎn)P個(gè)單位長度,設(shè)點(diǎn)P的橫坐標(biāo)為t,PMQ的面積為S,求出St之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB=BC,點(diǎn)OAC的中點(diǎn),點(diǎn)PAC上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)A,O,C重合).過點(diǎn)A,點(diǎn)C作直線BP的垂線,垂足分別為點(diǎn)E和點(diǎn)F,連接OE,OF.

(1)如圖1,請(qǐng)直接寫出線段OEOF的數(shù)量關(guān)系;

(2)如圖2,當(dāng)∠ABC=90°時(shí),請(qǐng)判斷線段OEOF之間的數(shù)量關(guān)系和位置關(guān)系,并說明理由

(3)若|CF﹣AE|=2,EF=2,當(dāng)POF為等腰三角形時(shí),請(qǐng)直接寫出線段OP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x,點(diǎn)A坐標(biāo)為(1,0),過點(diǎn)Ax軸的垂線交直線于點(diǎn),以原點(diǎn)O為圓心,OB 長為半徑畫弧交x軸于點(diǎn)A;再過點(diǎn)Ax軸的垂線交直線于點(diǎn)B,以原點(diǎn)O為圓心,OB 長為半徑畫弧交x軸于點(diǎn)A ,…,按此做法進(jìn)行下去,點(diǎn)A 的坐標(biāo)為___.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中每個(gè)小正方形的邊長均為1,點(diǎn)A、B、C、D均在小正方形的頂點(diǎn)上,

(1)在圖①中畫出以線段AB為一條邊的菱形ABEF,點(diǎn)EF在小正方形頂點(diǎn)上,且菱形ABEF的面積為20;

(2)在圖②中畫出以CD為對(duì)角線的矩形CGDH,G、H點(diǎn)在小正方形頂點(diǎn)上,點(diǎn)GCD的下方,且矩形CGDH的面積為10CGDG.并直接寫出矩形CGDH的周長.

查看答案和解析>>

同步練習(xí)冊(cè)答案