【題目】如圖,在ABC中,ACBCACB120°,點(diǎn)DAB邊上一點(diǎn),連接CD,以CD為邊作等邊CDE

1)如圖1,若CDB45°AB6,求等邊CDE的邊長;

2)如圖2,點(diǎn)DAB邊上移動(dòng)過程中,連接BE,取BE的中點(diǎn)F,連接CFDF,過點(diǎn)DDGAC于點(diǎn)G

求證:CFDF

如圖3,將CFD沿CF翻折得CF,連接B,直接寫出的最小值.

【答案】1;(2證明見解析;

【解析】

1)過點(diǎn)CCHAB于點(diǎn) H,由等腰三角形的性質(zhì)和直角三角形的性質(zhì)可得AB30°,AHBH3CH,由CDB45°,可得CDCH

2延長BCN,使CNBC,由SAS可證CENCDA,可得ENAD,NA30°,由三角形中位線定理可得CFENCFEN,可得BCFN30°,可證DGCF,DGCF,即可證四邊形CFDG是矩形,可得結(jié)論;

SAS可證EFDBF,可得BDE,則當(dāng)CD取最小值時(shí),有最小值,即可求解.

解:(1)如圖1,過點(diǎn)CCHAB于點(diǎn) H

ACBC,ACB120°,CHAB,

∴∠AB30°,AHBH3,

RtBCH中,tan∠B,

∴tan30°

CH,

∵∠CDH45°,CHAB,

∴∠CDHDCH45°,

DHCHCDCH;

2如圖2,延長BCN,使CNBC

ACBC,ACB120°

∴∠AABC30°,NCA60°,

ECD是等邊三角形,

ECCDECD60°,

∴∠NCAECD,

∴∠NCEDCA,

CECD,ACBCCN,

CENCDA(SAS),

ENAD,NA30°

BCCN,BFEF

CF∥EN,CFEN

∴∠BCFN30°,

∴∠ACFACBBCF90°

DGAC,

CF∥DG

∵∠A30°,DGAC

DGAD,

DGCF,

四邊形CFDG是平行四邊形,

∵∠ACF90°,

四邊形CFDG是矩形,

∴∠CFD90°

CFDF

如圖3,連接B,

CFD沿CF翻折得CF,

CDC,DFFCFDCF90°,

EFBFEFDBF,

EFDBF(SAS)

BDE,

BCD

當(dāng)B取最小值時(shí),有最小值,

當(dāng)CD取最小值時(shí),有最小值,

當(dāng)CDAB時(shí),CD有最小值,

ADCD,AB2AD2CD

最小值=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某校教學(xué)樓與實(shí)驗(yàn)樓的水平間距米,在實(shí)驗(yàn)樓頂部點(diǎn)測得教學(xué)樓頂部點(diǎn)的仰角是,底部點(diǎn)的俯角是,則教學(xué)樓的高度是____米(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“足球運(yùn)球”是中考體育必考項(xiàng)目之一.蘭州市某學(xué)校為了解今年九年級學(xué)生足球運(yùn)球的掌握情況,隨機(jī)抽取部分九年級學(xué)生足球運(yùn)球的測試成績作為一個(gè)樣本,按A,B,C,D四個(gè)等級進(jìn)行統(tǒng)計(jì),制成了如下不完整的統(tǒng)計(jì)圖.(說明:A級:8分﹣10分,B級:7分﹣7.9分,C級:6分﹣6.9分,D級:1分﹣5.9分)

根據(jù)所給信息,解答以下問題:

(1)在扇形統(tǒng)計(jì)圖中,C對應(yīng)的扇形的圓心角是   度;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)所抽取學(xué)生的足球運(yùn)球測試成績的中位數(shù)會(huì)落在   等級;

(4)該校九年級有300名學(xué)生,請估計(jì)足球運(yùn)球測試成績達(dá)到A級的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公共汽車線路每天運(yùn)營毛利潤(萬元)與乘客量(萬人)成一次函數(shù)關(guān)系,其圖象如圖所示.目前通過監(jiān)測發(fā)現(xiàn)每天平均乘客量為0.6萬人次,由于運(yùn)營成本較高,這條線路處于虧損狀態(tài).(毛利潤=票價(jià)總收入一運(yùn)營成本)

1)求該線路公共汽車的單程票價(jià)和每天運(yùn)營成本分別為多少元.

2)公交公司為了扭虧,若要使每天運(yùn)營毛利潤在0.2~0.4萬元之間(包括0.20.4),求平均每天的乘客量的范圍.

3)據(jù)實(shí)際情況,發(fā)現(xiàn)該線路乘客量穩(wěn)定,公交公司決定適當(dāng)提高票價(jià),當(dāng)單程票價(jià)每提高1元時(shí),每天平均乘客量相應(yīng)減少0.05萬人次,設(shè)這條線路的單程票價(jià)提高元(.當(dāng)為何值時(shí),該線路每天運(yùn)營總利潤最大,并求出最大的總利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,EAD邊上一點(diǎn),BE平分ABC,連接CE,已知DE6,CE8AE10

1)求AB的長;

2)求平行四邊形ABCD的面積;

3)求cos∠AEB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD是平行四邊形,AC為一條對角線,且.延長BC到點(diǎn)E,使,連接DE

1)判斷四邊形ACED的形狀,并說明理由;

2)連接AECD于點(diǎn)F,若,,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面中,給定線段ABC,P兩點(diǎn),點(diǎn)C與點(diǎn)P分布在線段AB的異側(cè),滿足,則稱點(diǎn)C與點(diǎn)P是關(guān)于線段AB的關(guān)聯(lián)點(diǎn).在平面直角坐標(biāo)系xOy中,已知點(diǎn),

1)在,三個(gè)點(diǎn)中,點(diǎn)O與點(diǎn)P是關(guān)于線段AB的關(guān)聯(lián)點(diǎn)的是________;

2)若點(diǎn)C與點(diǎn)P是關(guān)于線段OA的關(guān)聯(lián)點(diǎn),求點(diǎn)P的縱坐標(biāo)m的取值范圍;

3)直線x軸,y軸分別交與點(diǎn)E,F,若在線段AB上存在點(diǎn)P與點(diǎn)O是關(guān)于線段EF的關(guān)聯(lián)點(diǎn),直接寫出b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A、B、C、D、E是⊙O上五點(diǎn),⊙O的直徑BE=2,BCD=120°,A的中點(diǎn),延長BA到點(diǎn)P,使BA=AP,連接PE.

(1)求線段BD的長;

(2)求證:直線PE是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們定義:在平面直角坐標(biāo)系中,經(jīng)過點(diǎn),且平行于直線,叫過該點(diǎn)的“二維線”.例如,點(diǎn)的“二維線”有:

1)寫出點(diǎn)的“二維線”______;

2)若點(diǎn)的“二維線”是,,求、的值;

3)若反比例函數(shù)圖像上的一個(gè)點(diǎn)有一條“二維線”是,求點(diǎn)的另一條“二維線”.

查看答案和解析>>

同步練習(xí)冊答案