【題目】我們定義:在平面直角坐標(biāo)系中,經(jīng)過(guò)點(diǎn),且平行于直線或,叫過(guò)該點(diǎn)的“二維線”.例如,點(diǎn)的“二維線”有:,.
(1)寫(xiě)出點(diǎn)的“二維線”______;
(2)若點(diǎn)的“二維線”是,,求、的值;
(3)若反比例函數(shù)圖像上的一個(gè)點(diǎn)有一條“二維線”是,求點(diǎn)的另一條“二維線”.
【答案】(1),;(2),;(3)或.
【解析】
(1)根據(jù)“二維線”的定義和待定系數(shù)法解答即可;
(2)把點(diǎn)分別代入兩個(gè)一次函數(shù)關(guān)系式可得關(guān)于m、n的方程組,解方程組即得結(jié)果;
(3)把點(diǎn)分別代入反比例函數(shù)和一次函數(shù)關(guān)系式可得關(guān)于m、n的方程組,解方程組即可求出m、n的值,再根據(jù)“二維線”的定義即可求得結(jié)果.
解:(1)設(shè)點(diǎn)的“二維線”是:與,
把點(diǎn)分別代入,得,,
解得:,,
∴點(diǎn)的“二維線”是:,;
故答案為:,;
(2)根據(jù)題意,得:,解得:,;
(3)由題意,得:,解得:,,
設(shè)點(diǎn)的另一條“二維線”是,
當(dāng)m=14,n=﹣2時(shí),﹣2=14+a,解得:a=﹣16;
當(dāng)m=﹣2,n=14時(shí),14=﹣2+a,解得:a=16;
∴點(diǎn)的另一條“二維線”是或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABC中,AC=BC,∠ACB=120°,點(diǎn)D是AB邊上一點(diǎn),連接CD,以CD為邊作等邊CDE.
(1)如圖1,若∠CDB=45°,AB=6,求等邊CDE的邊長(zhǎng);
(2)如圖2,點(diǎn)D在AB邊上移動(dòng)過(guò)程中,連接BE,取BE的中點(diǎn)F,連接CF,DF,過(guò)點(diǎn)D作DG⊥AC于點(diǎn)G.
①求證:CF⊥DF;
②如圖3,將CFD沿CF翻折得CF,連接B,直接寫(xiě)出的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線的函數(shù)表達(dá)式為,點(diǎn)的坐標(biāo)為以為圓心,為半徑畫(huà)圓,交直線于點(diǎn),交軸正半軸于點(diǎn);以為圓心,為半徑畫(huà)圓,交直線于點(diǎn),交軸正半軸于點(diǎn);以為圓心,為半徑畫(huà)圓,交直線于點(diǎn),交軸正半軸于點(diǎn);······按此做法進(jìn)行下去,其中弧的長(zhǎng)________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】意外創(chuàng)傷隨時(shí)可能發(fā)生,急救是否及時(shí)、妥善,直接關(guān)系到病人的安危.為普及急救科普知識(shí),提高學(xué)生的急救意識(shí)與現(xiàn)場(chǎng)急救能力,某校開(kāi)展了急救知識(shí)進(jìn)校園培訓(xùn)活動(dòng).為了解七、八年級(jí)學(xué)生(七、八年級(jí)各有600名學(xué)生)的培訓(xùn)效果,該校舉行了相關(guān)的急救知識(shí)競(jìng)賽.現(xiàn)從兩個(gè)年級(jí)各隨機(jī)抽取20名學(xué)生的急救知識(shí)競(jìng)賽成績(jī)(百.分制)進(jìn)行分析,過(guò)程如下:
收集數(shù)據(jù):
七年級(jí):79,85,73,80,75,76,87,70,75,94,75,78,81,72,75,80,86,59,83,77.
八年級(jí):92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41.
整理數(shù)據(jù):
40≤x≤49 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 | |
七年級(jí) | 0 | 1 | 0 | a | 7 | 1 |
八年級(jí) | 1 | 0 | 0 | 7 | b | 2 |
分析數(shù)據(jù):
平均數(shù) | 眾數(shù) | 中位數(shù) | |
七年級(jí) | 78 | 75 | c |
八年級(jí) | 78 | d | 80.5 |
應(yīng)用數(shù)據(jù):
(1)由上表填空:a= ;b= ;c= ;d= .
(2)估計(jì)該校七、八兩個(gè)年級(jí)學(xué)生在本次競(jìng)賽中成績(jī)?cè)?/span>80分及以上的共有多少人?
(3)你認(rèn)為哪個(gè)年級(jí)的學(xué)生對(duì)急救知識(shí)掌握的總體水平較好,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形紙片中,,.現(xiàn)將紙片折疊,折痕與矩形、邊的交點(diǎn)分別為、.折疊后點(diǎn)的對(duì)應(yīng)點(diǎn)始終在邊上.若折痕始終與邊,有交點(diǎn),則點(diǎn)運(yùn)動(dòng)的最大距離是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角三角形的直角頂點(diǎn)在坐標(biāo)原點(diǎn),∠OAB=30°,若點(diǎn)A在反比例函數(shù)y=(x>0)的圖象上,則經(jīng)過(guò)點(diǎn)B的反比例函數(shù)解析式為( 。
A. y=﹣ B. y=﹣ C. y=﹣ D. y=
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,關(guān)于x的二次函數(shù)y=ax2﹣2ax(a>0)的頂點(diǎn)為C,與x軸交于點(diǎn)O、A,關(guān)于x的一次函數(shù)y=﹣ax(a>0).
(1)試說(shuō)明點(diǎn)C在一次函數(shù)的圖象上;
(2)若兩個(gè)點(diǎn)(k,y1)、(k+2,y2)(k≠0,±2)都在二次函數(shù)的圖象上,是否存在整數(shù)k,滿足?如果存在,請(qǐng)求出k的值;如果不存在,請(qǐng)說(shuō)明理由;
(3)若點(diǎn)E是二次函數(shù)圖象上一動(dòng)點(diǎn),E點(diǎn)的橫坐標(biāo)是n,且﹣1≤n≤1,過(guò)點(diǎn)E作y軸的平行線,與一次函數(shù)圖象交于點(diǎn)F,當(dāng)0<a≤2時(shí),求線段EF的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2﹣2ax.
(1)二次函數(shù)圖象的對(duì)稱軸是直線x= ;
(2)當(dāng)0≤x≤3時(shí),y的最大值與最小值的差為4,求該二次函數(shù)的表達(dá)式;
(3)若a<0,對(duì)于二次函數(shù)圖象上的兩點(diǎn)P(x1,y1),Q(x2,y2),當(dāng)t≤x1≤t+1,x2≥3時(shí),均滿足y1≥y2,請(qǐng)結(jié)合函數(shù)圖象,直接寫(xiě)出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,若拋物線y=x2+bx+c與x軸相交于A,B兩點(diǎn),與y軸相交于點(diǎn)C,直線y=x﹣3經(jīng)過(guò)點(diǎn)B,C.
(1)求拋物線的解析式;
(2)點(diǎn)P是直線BC下方拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)P作PH⊥x軸于點(diǎn)H,交BC于點(diǎn)M,連接PC.
①線段PM是否有最大值?如果有,求出最大值;如果沒(méi)有,請(qǐng)說(shuō)明理由;
②在點(diǎn)P運(yùn)動(dòng)的過(guò)程中,是否存在點(diǎn)M,恰好使△PCM是以PM為腰的等腰三角形?如果存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com