【題目】如圖,在平行四邊形ABCD中,EAD邊上一點,BE平分ABC,連接CE,已知DE6,CE8,AE10

1)求AB的長;

2)求平行四邊形ABCD的面積;

3)求cos∠AEB

【答案】110;(2128;(3

【解析】

1)由平行四邊形的性質(zhì)及角平分線的定義可得出ABAE,進而再利用題中數(shù)據(jù)即可求解結(jié)論;

2)易證CED為直角三角形,則CEAD,基礎(chǔ)CE為平行四邊形的高,利用平行四邊形的面積公式計算即可;

3)易證BCE90°,求cos∠AEB的值可轉(zhuǎn)化為求cos∠EBC的值,利用勾股定理求出BE的長即可.

解:(1四邊形ABCD是平行四邊形,

ADBC

∴∠AEBCBE,

BE平分ABC

∠ABE=∠CBE,

∴∠ABEAEB

ABAE10,

2四邊形ABCD是平行四邊形.

CDAB10

CED中,CD10,DE6,CE8,

ED2+CE2CD2

∴∠CED90°

CEAD,

平行四邊形ABCD的面積=ADCE(10+6)×8128

3四邊形ABCD是平行四邊形.

BCAD,BCAD

∴∠BCECED90°,AD16,

∴RtBCE中,BE8

∴cos∠AEBcos∠EBC

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰中,,,將繞點逆時針旋轉(zhuǎn),得到,連結(jié)

1)求證:;

2)四邊形是什么形狀的四邊形?并說明理由;

3)直接寫出:當(dāng)分別是多少度時,①;②

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線y1=ax2+bx+ca≠0)圖象的一部分,拋物線的頂點坐標(biāo)A1,3),與x軸的一個交點B4,0),直線y2=mx+nm≠0)與拋物線交于A,B兩點,下列結(jié)論:

①2a+b=0;②abc0;方程ax2+bx+c=3有兩個相等的實數(shù)根;拋物線與x軸的另一個交點是(﹣1,0);當(dāng)1x4時,有y2y1,

其中正確的是( )

A. ①②③ B. ①③④ C. ①③⑤ D. ②④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,為原點,點,點.以為一邊作等邊三角形,點在第二象限.

()如圖①,求點的坐標(biāo);

()繞點順時針旋轉(zhuǎn)得,點旋轉(zhuǎn)后的對應(yīng)點為

①如圖②,當(dāng)旋轉(zhuǎn)角為30°時,分別交于點交于點,求公共部分面積的值;

②若為線段的中點,求長的取值范圍(直接寫出結(jié)果即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩地相距,甲、乙兩人從兩地出發(fā)相向而行,甲先出發(fā).圖中表示兩人離地的距離與時間的關(guān)系,結(jié)合圖象,下列結(jié)論錯誤的是(

A.是表示甲離地的距離與時間關(guān)系的圖象

B.乙的速度是

C.兩人相遇時間在

D.當(dāng)甲到達終點時乙距離終點還有

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ACBC,ACB120°,點DAB邊上一點,連接CD,以CD為邊作等邊CDE

1)如圖1,若CDB45°,AB6,求等邊CDE的邊長;

2)如圖2,點DAB邊上移動過程中,連接BE,取BE的中點F,連接CF,DF,過點DDGAC于點G

求證:CFDF;

如圖3,將CFD沿CF翻折得CF,連接B,直接寫出的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB的直徑,點E的中點,CA相切于點ABE延長于點C,過點A于點F,交于點D,交BC于點Q,連接BD

1)求證:;

2)若,求CQ的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,C是⊙O上一點,∠BAC的平分線交⊙O于點D,交⊙O的切線BE于點E,過點DDFAC,交AC的延長線于點F

1)求證:DF是⊙O的切線;

2)若DF=3DE=2

①求值;

②求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形紙片中,.現(xiàn)將紙片折疊,折痕與矩形、邊的交點分別為、.折疊后點的對應(yīng)點始終在邊上.若折痕始終與邊,有交點,則點運動的最大距離是______

查看答案和解析>>

同步練習(xí)冊答案