【題目】如圖,在△BAC中,∠B∠C的平分線相交于點F,過點FDE∥BCAB于點D,交AC于點E,若BD=5,CE=4,則線段DE的長為( 。

A. 9 B. 6 C. 5 D. 4

【答案】A

【解析】

根據(jù)ABC中,ABCACB的平分線相交于點F.求證DBF=∠FBC,∠ECF=∠BCF,再利用兩直線平行內錯角相等,求證出DFB=∠DBF,∠CFE=∠BCF,即BD=DF,FE=CE,然后利用等量代換即可求出線段DE的長.

∵∠ABCACB的平分線相交于點F,

∴∠DBF=∠FBC,∠ECF=∠BCF,

DEBC,交AB于點D,交AC于點E,

∴∠DFB=∠DBF,∠CFE=∠ECF,

BD=DF=5,FE=CE=4,

DE=DF+EF=5+4=9.

故選A.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線l1y2x+1、直線l2y=﹣x+7,直線l1、l2分別交x軸于BC兩點,l1、l2相交于點A

1)求AB、C三點坐標;

2)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P是線段AB上任一點,AB=12 cm,C、D兩點分別從P、B同時向A點運動,且C點的運動速度為2 cm/s,D點的運動速度為3 cm/s,運動的時間為t s.

(1)若AP=8 cm.

①運動1 s后,求CD的長;

②當D在線段PB運動上時,試說明AC=2CD;

(2)如果t=2 s時,CD=1 cm,試探索AP的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小強打算找印刷公司設計一款新年賀卡并印刷.如圖1是甲印刷公司設計與印刷卡片計價方式的說明(包含設計費與印刷費),乙公司的收費與印刷卡片數(shù)量的關系如圖2所示.

1)分別寫出甲乙兩公司的收費y(元)與印刷數(shù)量x之間的關系式.

2)如果你是小強,你會選擇哪家公司?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知平面直角坐標系中有一點.

(1)點My軸的距離為1時,M的坐標?

(2)點MN//x軸時,M的坐標?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某快遞公司的每位“快遞小哥”日收入與每日的派送量成一次函數(shù)關系,如圖所示.

(1)求每位“快遞小哥”的日收入y(元)與日派送量x(件)之間的函數(shù)關系式;
(2)已知某“快遞小哥”的日收入不少于110元,則他至少要派送多少件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列語句:有一邊對應相等的兩個直角三角形全等;一般三角形具有的性質,直角三角形都具有;有兩邊相等的兩直角三角形全等;兩直角三角形的斜邊為5cm,一條直角邊都為3cm,則這兩個直角三角形必全等.其中正確的有________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】以坐標原點為圓心,1為半徑的圓分別交x,y軸的正半軸于點A,B.

(1)如圖一,動點P從點A處出發(fā),沿x軸向右勻速運動,與此同時,動點Q從點B處出發(fā),沿圓周按順時針方向勻速運動.若點Q的運動速度比點P的運動速度慢,經過1秒后點P運動到點(2,0),此時PQ恰好是⊙O的切線,連接OQ.求∠QOP的大小;
(2)若點Q按照(1)中的方向和速度繼續(xù)運動,點P停留在點(2,0)處不動,求點Q再經過5秒后直線PQ被⊙O截得的弦長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把四張大小相同的長方形卡片(如圖①)按圖②、圖③兩種放法放在一個底面為長方形(長比寬多6)的盒底上,底面未被卡片覆蓋的部分用陰影表示,若記圖②中陰影部分的周長為C2,圖③中陰影部分的周長為C3,則C2-C3=______

查看答案和解析>>

同步練習冊答案