【題目】2017年,我市某樓盤以每平方米6500元的均價對外銷售.因為樓盤滯銷,房地產(chǎn)開發(fā)商為了加快資金周轉(zhuǎn),決定進行降價促銷,經(jīng)過連續(xù)兩年平均下調(diào)10%后.

1)求2019年我市樓盤以每平方米多少元的均價對外銷售?

2)假設(shè)2020年的均價仍然下調(diào)相同的百分率,張強準備購買一套100平方米的住房,他持有現(xiàn)金20萬元,可以在銀行貸款30萬元,張強的愿望能否實現(xiàn)?(房價每平方米按照均價計算)

【答案】15265元;(2)張強的愿望可以實現(xiàn),見解析

【解析】

(1)根據(jù)題意列式6500(110)2計算即可;

(2)根據(jù)2020年的均價仍然下調(diào)相同的百分率,求出2020年的房價,再求出購買一套100平方米的住房的總房款即可得出答案.

(1)根據(jù)題意,得:6500(110)2(/平方米)

答:2019年我市樓盤以每平方米元的均價對外銷售;

(2)如果下調(diào)的百分率相同,

2020年的房價為:5265×(110%)=4738.5(元/平方米),

100平方米的住房的總房款為100×4738.5473850(元)=47.385(萬元),

20+3047.385

∴張強的愿望可以實現(xiàn).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1的正方形組成的網(wǎng)格中,△AOB的頂點均在格點上,其中點A(5,4),B(1,3),將△AOB繞點O逆時針旋轉(zhuǎn)90°后得到△A1OB1

(1)畫出△A1OB1

(2)在旋轉(zhuǎn)過程中點B所經(jīng)過的路徑長為______;

(3)求在旋轉(zhuǎn)過程中線段AB、BO掃過的圖形的面積之和.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知⊙O的半徑為5,弦AB,CD所對的圓心角分別是∠AOB,∠COD,下列說法正確的是( )①若∠AOB=∠COD,則CDAB;②若CDAB,則CD,AB所對的弧相等;③若CDAB,則點OCD,AB的距離相等;④若∠AOB+∠COD180°,且CD6,則AB8

A.①②③④B.①③④C.①②④D.③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在平面直角坐標系中,圓心為Px,y)的動圓經(jīng)過點A1,2)且與x軸相切于點B

1)當x=2時,求⊙P的半徑;

2)求y關(guān)于x的函數(shù)解析式;判斷此函數(shù)圖象的形狀;并在圖②中畫出此函數(shù)的圖象;

3)當⊙P的半徑為1時,若⊙P與以上(2)中所得函數(shù)圖象相交于點C、D,其中交點Dm,n)在點C的右側(cè),請利用圖②,求cosAPD的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若一個等腰三角形的三邊長均滿足方程x2-6x+8=0,則此三角形的周長為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BD⊙O的直徑,AE⊥CD于點EDA平分∠BDE

)求證:AE⊙O的切線;

)若∠DBC=30°DE=1 cm,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b(k≠0)與反比例函數(shù)y=(m≠0)的圖象有公共點A(1,a)、D(﹣2,﹣1).直線l與x軸垂直于點N(3,0),與一次函數(shù)和反比例函數(shù)的圖象分別交于點B、C.

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)根據(jù)圖象回答,x在什么范圍內(nèi),一次函數(shù)的值大于反比例函數(shù)的值;

(3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y1x22x,直線y2=-2xb相交于A,B兩點,其中點A的橫坐標為2.當x任取一值時,x對應(yīng)的函數(shù)值分別為y1,y2,取m(|y1y2|y1y2).則

A. x<-2時,my2B. mx的增大而減。

C. m2時,x0D. m2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知⊙O 的半徑長為2,點C為直徑AB的延長線上一點,且BC=2.過點C任作一條直線l.若直線l上總存在點P,使得過點P所作的⊙O 的兩條切線互相垂直,則∠ACP的最大值等于__________°.

查看答案和解析>>

同步練習冊答案