【題目】如圖,已知⊙O的半徑為5,弦AB,CD所對的圓心角分別是∠AOB,∠COD,下列說法正確的是( )①若∠AOB=∠COD,則CDAB;②若CDAB,則CD,AB所對的弧相等;③若CDAB,則點(diǎn)OCD,AB的距離相等;④若∠AOB+∠COD180°,且CD6,則AB8

A.①②③④B.①③④C.①②④D.③④

【答案】B

【解析】

①②根據(jù)圓心角、圓心角所對的弦、弧之間的關(guān)系即可判斷;

③根據(jù)全等三角形的對應(yīng)高相等判定即可;

④延長AO交⊙O于點(diǎn)E,連接BE,由∠AOB+BOE=AOB+COD知∠BOE=COD,據(jù)此可得BE=CD=6,在RtABE中利用勾股定理求解可得.

若∠AOB=∠COD,則CDAB,故①正確;

因?yàn)橐粭l弦對兩條弧,所以若CDAB,則CD,AB所對的弧相等是錯(cuò)誤的,故②錯(cuò)誤;

CDAB,又OA=OC,OB=OD,則OAB≌△OCD,則AB、CD邊上的高相等,即則點(diǎn)OCD,AB的距離相等,故③正確;

如圖,延長AO交⊙O于點(diǎn)E,連接BE,

則∠AOB+BOE=180°,
又∵∠AOB+COD=180°,
∴∠BOE=COD,
BE=CD=6,
AE為⊙O的直徑,
∴∠ABE=90°
AB=

故④正確.

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC為等邊三角形,EAC上一點(diǎn),連接BE,將△BEC旋轉(zhuǎn),使點(diǎn)C落在BC上的點(diǎn)D處,點(diǎn)B落在BC上方的點(diǎn)F處,點(diǎn)E落在點(diǎn)C處,連接AF.求證:四邊形ABDF為平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于的一元二次方程.

1)求證:方程總有兩個(gè)實(shí)數(shù)根;

2)若方程有一根小于1,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,邊BCx軸上,點(diǎn)E是對角線AC,BD的交點(diǎn),反比例函數(shù)y=的圖象經(jīng)過A,E兩點(diǎn),則k的值為( 。

A. 8B. 4C. 6D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)ykx+3的圖象分別交x軸、y軸于點(diǎn)B、點(diǎn)C,與反比例函數(shù)的圖象在第四象限的相交于點(diǎn)P,并且PAy軸于點(diǎn)A,已知A 0,﹣6),且SCAP18

1)求上述一次函數(shù)與反比例函數(shù)的表達(dá)式;

2)設(shè)Q是一次函數(shù)ykx+3圖象上的一點(diǎn),且滿足△OCQ的面積是△BCO面積的2倍,求出點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠BAC90°,CD平分∠ACB,交AB于點(diǎn)D,以點(diǎn)D為圓心,DA為半徑的圓與AB相交于點(diǎn)E,與CD交于點(diǎn)F

1)求證:BC是⊙D的切線;

2)若EFBC,且BC6,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2+bx+ca0)圖象如圖,下列結(jié)論:abc0;②2a+b0ab+c0;a+c0;b24ac;當(dāng)x1時(shí),yx的增大而減。渲姓_的說法有_____(寫出正確說法的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017年,我市某樓盤以每平方米6500元的均價(jià)對外銷售.因?yàn)闃潜P滯銷,房地產(chǎn)開發(fā)商為了加快資金周轉(zhuǎn),決定進(jìn)行降價(jià)促銷,經(jīng)過連續(xù)兩年平均下調(diào)10%后.

1)求2019年我市樓盤以每平方米多少元的均價(jià)對外銷售?

2)假設(shè)2020年的均價(jià)仍然下調(diào)相同的百分率,張強(qiáng)準(zhǔn)備購買一套100平方米的住房,他持有現(xiàn)金20萬元,可以在銀行貸款30萬元,張強(qiáng)的愿望能否實(shí)現(xiàn)?(房價(jià)每平方米按照均價(jià)計(jì)算)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線軸交于,兩點(diǎn).(點(diǎn)在點(diǎn)的左側(cè))

1)①填空:時(shí),點(diǎn)的坐標(biāo)   ,點(diǎn)的坐標(biāo)   ;當(dāng)時(shí),點(diǎn)的坐標(biāo)   ,點(diǎn)的坐標(biāo)   

②猜想:隨值的變化,拋物線是否會(huì)經(jīng)過某一個(gè)定點(diǎn),若會(huì),請求出該定點(diǎn)的坐標(biāo):若不會(huì),請說明理由.

2)若將拋物線經(jīng)過適當(dāng)平移后,得到拋物線,的對應(yīng)點(diǎn)分別為,,求拋物線的解析式.

3)設(shè)拋物線的頂點(diǎn)為,當(dāng)為直角三角形時(shí),求方程的解.

查看答案和解析>>

同步練習(xí)冊答案