【題目】在學校組織的八年級數(shù)學競賽中,每班參加比賽的人數(shù)相同,成績分為A,B,C,D四個等級,其中相應(yīng)等級的得分依次記為90分,80分,70分,60分,學校將八年級一班和二班的成績整理并繪制成如下的統(tǒng)計圖:

請你根據(jù)提供的信息解答下列問題:

1)此次競賽中二班80分以上(包括80分)的人數(shù)為   ;

2)請你將表格補充完整:

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

一班

77.6

80

   

二班

77.6

   

90

3)請從不同角度對這次競賽成績的結(jié)果進行分析.(至少兩個角度)

【答案】112;(280,70;(3)詳見解析.

【解析】

1)根據(jù)條形統(tǒng)計圖可得每班參賽人數(shù),然后用參賽人數(shù)×(二班A等級所占百分比+B等級所占百分比)即得結(jié)果;

2)根據(jù)條形統(tǒng)計圖中B等級人數(shù)最多可得一班成績的眾數(shù);由上題中求得的總?cè)藬?shù)分別求出二班各個成績段的人數(shù),然后即可求出二班成績的中位數(shù);

3)從中位數(shù)和眾數(shù)兩個角度作出合理的分析即可.

解:(1)一班參賽人數(shù)為:6+12+2+525(人),

∵兩班參賽人數(shù)相同,∴二班成績在80分以上(包括80分)的人數(shù)為25×44%+4%)=12人;

故答案為:12

2)由于條形統(tǒng)計圖中B等級人數(shù)最多,∴一班成績的眾數(shù)是80分;

二班得90分的為:25×44%=11人,得80分的為:25×4%=1人,得70分的為:25×36%=9人,得60分的為:25×16%=4人,∴二班成績的中位數(shù)是:70分;

填表如下:

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

一班

77.6

80

80

二班

77.6

70

90

3)①平均數(shù)相同的情況下,從兩個班的眾數(shù)看,由于9080,∴二班的成績更好一些;

②從兩個班的中位數(shù)來看,由于8070,∴一班的成績比一班好,但二班D等級的人數(shù)比一班少,∴綜合來看,二班成績要稍好一些.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O是ABC的邊AB上一點,O與邊AC相切于點E,與邊BC,AB分別相交于點D,F(xiàn),且DE=EF.

(1)求證:∠C=90°;

(2)當BC=3,sinA=時,求AF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于點A2,1),B(-1n兩點.

(1)求反比例函數(shù)的解析式;

(2)求一次例函數(shù)的解析式;

(3)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了了解九年級學生體育測試成績情況,以九年級(1)班學生的體育測試成績?yōu)闃颖荆碆、C、D四個等級進行統(tǒng)計,并將統(tǒng)計結(jié)果繪制如下兩幅統(tǒng)計圖,請你結(jié)合圖中所給信息解答下列問題:(說明:A級:90分﹣100分;B級:75分﹣89分;C級:60分~74分;D級:60分以下)

(1)求出D級學生的人數(shù)占全班總?cè)藬?shù)的百分比;

(2)求出扇形統(tǒng)計圖(圖2)中C級所在的扇形圓心角的度數(shù);

(3)若該校九年級學生共有500人,請你估計這次考試中A級和B級的學生共有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)解方程:

2)列分式方程解應(yīng)用題:

用電腦程序控制小型賽車進行比賽,暢想號逐夢號兩賽車進入了最后的決賽.比賽中,兩車從起點同時出發(fā),暢想號到達終點時,逐夢號離終點還差.從賽后數(shù)據(jù)得知兩車的平均速度相差.暢想號的平均速度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的圖象經(jīng)過(2,1),(1,1)兩點,則下列關(guān)于此二次函數(shù)的說法正確的是【 】

A.y的最大值小于0      B.當x=0時,y的值大于1

C.當x=1時,y的值大于1  D.當x=3時,y的值小于0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,二次函數(shù)的圖象與軸交于兩點,點在原點的左側(cè),點的坐標為,與軸交于點,點是直線下方的拋物線上一動點.

求這個二次函數(shù)的表達式.

連接、,并把沿翻折,得到四邊形,那么是否存在點,使四邊形為菱形?若存在,請求出此時點的坐標;若不存在,請說明理由.

當點運動到什么位置時,四邊形的面積最大?求出此時點的坐標和四邊形的最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在平面直角坐標系中有一格點三角形,該三角形的三個頂點為:A(1,1),B(﹣3,1),C(﹣3,﹣1).

(1)若△ABC的外接圓的圓心為P,則點P的坐標為_____,P的半徑為_____;

(2)如圖所示,在11×8的網(wǎng)格圖內(nèi),以坐標原點O點為位似中心,將△ABC按相似比2:1放大,A、B、C的對應(yīng)點分別為A'、B'、C'.①畫出△A'B'C';②將△A'B'C'沿x軸方向平移,需平移_____個單位長度,能使得B'C'所在的直線與⊙P相切.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知反比例函數(shù)k為常數(shù),k≠1).

)其圖象與正比例函數(shù)y=x的圖象的一個交點為P,若點P的縱坐標是2,求k的值;

)若在其圖象的每一支上,yx的增大而減小,求k的取值范圍;

)若其圖象的一支位于第二象限,在這一支上任取兩點Ax1,y1、Bx2y2,當y1y2時,試比較x1x2的大。

查看答案和解析>>

同步練習冊答案