【題目】如圖是一張平行四邊形紙片ABCD,要求利用所學知識將它變成一個菱形,甲、乙兩位同學的作法分別如下:

對于甲、乙兩人的作法,可判斷(  )

A. 甲正確,乙錯誤 B. 甲錯誤,乙正確

C. 甲、乙均正確 D. 甲、乙均錯誤

【答案】C

【解析】試題解析:根據(jù)甲的作法作出圖形,如下圖所示.

∵四邊形ABCD是平行四邊形,

ADBC,

EFAC的垂直平分線,

中,

,

又∵AECF,

∴四邊形AECF是平行四邊形.

∴四邊形AECF是菱形.

故甲的作法正確.

根據(jù)乙的作法作出圖形,如下圖所示.

ADBC,

∴∠1=2,6=7.

BF平分,AE平分

∴∠2=3,5=6

∴∠1=3,5=7,

AFBE,且

∴四邊形ABEF是平行四邊形.

∴平行四邊形ABEF是菱形.

故乙的作法正確.

故選C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某市為鼓勵居民節(jié)約用水,采用分段計費的方法按月計算每戶家庭的水費,月用水量不超過30立方米時,按2元/立方米計費;月用水量超過30立方米時,其中的30立方米仍按2元/立方米收費,超過部分按2.5元/立方米計費.設每戶家庭月用水量為x立方米.

(1)當x不超過30時,應收多少水費(用x的代數(shù)式表示);當x超過30時,應收多少水費(用x的代數(shù)式表示);

(2)小明家四月份用水20立方米,五月份用水36立方米,請幫小明計算一下他家這兩個月一共應交多少元水費?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點E、F分別是正方形ABCD的邊CD、AD上的點,且CE=DFAE、BF相交于點O,下面四個結論:(1AE=BF,(2AEBF,(3AO=OE,(4SAOB=S四邊形DEOF,其中正確結論的序號是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為6的正方形ABCD中,E是邊CD的中點,將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG.

(1)求證:△ABG≌△AFG;(2)求BG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先閱讀下面的材料,再解答后面的各題:

現(xiàn)代社會對保密要求越來越高,密碼正在成為人們生活的一部分.有一種密碼的明文(真實文)按計算機鍵盤字母排列分解,其中QW,E……,NM26個字母依次對應1,2,3……,25,2626個自然數(shù)(見下表)

Q

W

E

R

T

Y

U

I

O

P

A

S

D

1

2

3

4

5

6

7

8

9

10

11

12

13

F

G

H

J

K

L

Z

X

C

V

B

N

M

14

15

16

17

18

19

20

21

22

23

24

25

26

給出一個變換公式:

將明文轉(zhuǎn)成密文,如:,即R變?yōu)?/span>L;,即A變?yōu)?/span>S

將密文轉(zhuǎn)換成明文,如:,即X變?yōu)?/span>P133×(138)114,即D變?yōu)?/span>F

(1)按上述方法將明文NET譯為密文.

(2)若按上方法將明文譯成的密文為DWN,請找出它的明文.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】商場經(jīng)營的某品牌童裝,4月的銷售額為20000元,為擴大銷量,5月份商場對這種童裝打9折銷售,結果銷量增加了50件,銷售額增加了7000元.

(1)求該童裝4月份的銷售單價;

(2)4月份銷售這種童裝獲利8000元,6月全月商場進行六一兒童節(jié)促銷活動.童裝在4月售價的基礎上一律打8折銷售,若該童裝的成本不變,則銷量至少為多少件,才能保證6月的利潤比4月的利潤至少增長25%?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為半圓O的直徑,C為BA延長線上一點,CD切半圓O于點D。連結OD,作BE⊥CD于點E,交半圓O于點F。已知CE=12,BE=9,

(1)求證:△COD∽△CBE;

(2)求半圓O的半徑的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩大型超市為了吸引顧客,都舉行有獎酬賓活動,凡購物滿200元,均可得到一次抽獎的機會,在一個紙盒里裝有2個紅球和2個白球,除顏色外其它都相同,抽獎者一次從中摸出兩個球,根據(jù)球的顏色決定送禮金券(在他們超市使用時,與人民幣等值)的多少(如下表).

甲超市.


兩 紅

一紅一白

兩 白

禮金券(元)

20

50

20

乙超市:


兩 紅

一紅一白

兩 白

禮金券(元)

50

20

50

1】(1)用樹狀圖表示得到一次摸獎機會時中禮金券的所有情況;

2】(2)如果只考慮中獎因素,你將會選擇去哪個超市購物?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】原來公園有一個半徑為 1 m 的苗圃,現(xiàn)在準備擴大面積,設當擴大后的半徑為x m,則增加的環(huán)形的面積為y m 2 .

(1)寫出yx的函數(shù)關系式;

(2)當半徑增大到多少時面積增大1倍;

(3)試猜測半徑是多少時,面積是原來的3、4、5、….

查看答案和解析>>

同步練習冊答案