【題目】如圖,AB是⊙O的直徑,點(diǎn)P是弦AC上一動點(diǎn)(不與A,C重合),過點(diǎn)PPEAB,垂足為E,射線EP交弧AC于點(diǎn)F,交過點(diǎn)C的切線于點(diǎn)D.

(1)求證:DC=DP;

(2)若∠CAB=30°,當(dāng)F是弧AC的中點(diǎn)時,判斷以A,O,C,F(xiàn)為頂點(diǎn)的四邊形是什么特殊四邊形?說明理由.

【答案】(1)證明見解析;(2)以A,O,C,F(xiàn)為頂點(diǎn)的四邊形是菱形理由見解析.

【解析】分析:(1)連接OC,根據(jù)切線的性質(zhì)和PEOE以及∠OAC=ACO,得∠APE=DPC,然后結(jié)合對頂角的性質(zhì)可證得結(jié)論;
(2)由易得△OBC為等邊三角形,可得F的中點(diǎn),易得△AOF與△COF均為等邊三角形,可得AF=AO=OC=CF,易得四邊形OACF為菱形.

詳解:(1)證明:連接OC,

∵∠OAC=ACO,PEOEOCCD,

∴∠APE=PCD

∵∠APE=DPC,

∴∠DPC=PCD,

DC=DP;

(2)A,O,C,F為頂點(diǎn)的四邊形是菱形;

∴△OBC為等邊三角形,

連接OFAF,

F的中點(diǎn),

∴△AOF與△COF均為等邊三角形,

AF=AO=OC=CF

∴四邊形OACF為菱形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,EBD上一點(diǎn),AE的延長線交CDF,交BC的延長線于G,MFG的中點(diǎn).

1)求證:① 1=2 ECMC.

2)試問當(dāng)∠1等于多少度時,ECG為等腰三角形?請說明理由.

【答案】1①證明見解析;②證明見解析;(2)當(dāng)∠1=30°時,ECG為等腰三角形. 理由見解析.

【解析】試題分析:1①根據(jù)正方形的對角線平分一組對角可得然后利用邊角邊定理證明再根據(jù)全等三角形對應(yīng)角相等即可證明;
②根據(jù)兩直線平行,內(nèi)錯角相等可得 再根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得然后據(jù)等邊對等角的性質(zhì)得到,所以 然后根據(jù)即可證明 從而得證;
2)根據(jù)(1)的結(jié)論,結(jié)合等腰三角形兩底角相等 然后利用三角形的內(nèi)角和定理列式進(jìn)行計算即可求解.

試題解析:(1)證明:①∵四邊形ABCD是正方形,

∴∠ADE=CDE,AD=CD,

在△ADE與△CDE,

∴△ADE≌△CDE(SAS)

∴∠1=2,

②∵ADBG(正方形的對邊平行)

∴∠1=G,

MFG的中點(diǎn),

MC=MG=MF,

∴∠G=MCG,

又∵∠1=2,

∴∠2=MCG,

ECMC;

2)當(dāng)∠1=30°時, 為等腰三角形. 理由如下:

要使為等腰三角形,必有

∴∠1=30°.

型】解答
結(jié)束】
24

【題目】如圖,已知拋物線經(jīng)過原點(diǎn)O和點(diǎn)A,點(diǎn)B(2,3)是該拋物線對稱軸上一點(diǎn),過點(diǎn)BBCx軸交拋物線于點(diǎn)C,連結(jié)BO、CA,若四邊形OACB是平行四邊形.

1 直接寫出A、C兩點(diǎn)的坐標(biāo);② 求這條拋物線的函數(shù)關(guān)系式;

2)設(shè)該拋物線的頂點(diǎn)為M,試在線段AC上找出這樣的點(diǎn)P,使得PBM是以BM為底邊的等腰三角形并求出此時點(diǎn)P的坐標(biāo);

3)經(jīng)過點(diǎn)M的直線把□ OACB的面積分為1:3兩部分,求這條直線的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】幸福是奮斗出來的,在數(shù)軸上,若CA的距離剛好是3,則C點(diǎn)叫做A幸福點(diǎn),若CA、B的距離之和為6,則C叫做A、B幸福中心

(1)如圖1,點(diǎn)A表示的數(shù)為﹣1,則A的幸福點(diǎn)C所表示的數(shù)應(yīng)該是   ;

(2)如圖2,M、N為數(shù)軸上兩點(diǎn),點(diǎn)M所表示的數(shù)為4,點(diǎn)N所表示的數(shù)為﹣2,點(diǎn)C就是M、N的幸福中心,則C所表示的數(shù)可以是   (填一個即可);

(3)如圖3,A、B、P為數(shù)軸上三點(diǎn),點(diǎn)A所表示的數(shù)為﹣1,點(diǎn)B所表示的數(shù)為4,點(diǎn)P所表示的數(shù)為8,現(xiàn)有一只電子螞蟻從點(diǎn)P出發(fā),以2個單位每秒的速度向左運(yùn)動,當(dāng)經(jīng)過多少秒時,電子螞蟻是AB的幸福中心?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于A-2,-1)、B1,n)兩點(diǎn)。

(1)利用圖中條件求反比例函數(shù)和一次函數(shù)的解析式;

(2)根據(jù)圖象寫出使一次函數(shù)的值大于反比例函數(shù)的值的的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一張正方形紙片,第1次剪成四個大小形狀一樣的小正方形,第2次將其中的一個小正方形再按同樣的方法剪成四個小正方形,然后再將其中的一個小正方形剪成四個小正方形,如此循環(huán)進(jìn)行下去,如果次,則可剪出 個正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段AB上順次有三個點(diǎn)C,DE,把線段AB分為了2:3:4:5四部分,且AB=28,

1)求線段AE的長;

2)若MN分別是DE,EB的中點(diǎn),求線段MN的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一條筆直的公路上有A、B兩地.甲、乙兩人同時出發(fā),甲騎電動車從A地勻速前往B地,行走到一半路程時出現(xiàn)故障后停車維修,修好車后以原速繼續(xù)行駛到B地;乙騎摩托車從B地勻速前往A地,到達(dá)A地后立即按原路原速返回,結(jié)果兩人同時到B.甲、乙兩人與B地的距離y(km)與乙行駛時間x(h)之間的函數(shù)圖象如圖所示.

1)求甲修車前的速度.

2)求甲、乙第一次相遇的時間.

3)若兩人之間的距離不超過10km時,能夠用無線對講機(jī)保持聯(lián)系,請直接寫出乙在行進(jìn)中能用無線對講機(jī)與甲保持聯(lián)系的x取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)中,點(diǎn)O為坐標(biāo)原點(diǎn),直線y=﹣x+4與x軸交于點(diǎn)A,過點(diǎn)A的拋物線y=ax2+bx與直線y=﹣x+4交于另一點(diǎn)B,且點(diǎn)B的橫坐標(biāo)為1.

(1)求a,b的值;

(2)點(diǎn)P是線段AB上一動點(diǎn)(點(diǎn)P不與點(diǎn)A、B重合),過點(diǎn)P作PMOB交第一象限內(nèi)的拋物線于點(diǎn)M,過點(diǎn)M作MCx軸于點(diǎn)C,交AB于點(diǎn)N,過點(diǎn)P作PFMC于點(diǎn)F,設(shè)PF的長為t,MN的長為d,求d與t之間的函數(shù)關(guān)系式(不要求寫出自變量t的取值范圍);

(3)在(2)的條件下,當(dāng)SACN=SPMN時,連接ON,點(diǎn)Q在線段BP上,過點(diǎn)Q作QRMN交ON于點(diǎn)R,連接MQ、BR,當(dāng)MQR﹣BRN=45°時,求點(diǎn)R的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案