【題目】如圖,在正方形ABCD中,E、F分別是AB、CD的中點,EGAFFHCE,垂足分別為G,H,設AG=x,圖中陰影部分面積為y,則yx之間的函數(shù)關系式是( 。

A. y=3x2 B. y=4x2 C. y=8x2 D. y=9x2

【答案】C

【解析】

設正方形的邊長為2a,易證四邊形AFCE是平行四邊形,所以四邊形EHFG是矩形,由∠AEG=∠BCE得到等式,從而可用x表示出EG,接著用x表示EH,從而可求出yx之間的關系式.

解:設正方形的邊長為2a
BC=2a,BEa
E、F分別是ABCD的中點,
AECF
AECF,
∴四邊形AFCE是平行四邊形,
AFCE,
EGAFFHCE,
∴四邊形EHFG是矩形,
∵∠AEG+∠BEC=∠BCE+∠BEC=90°,
∴∠AEG=∠BCE,
tanAEGtanBCE
,
EG=2x
∴由勾股定理可知:AEx,
ABBCx
CE=5x,
易證:AEG≌△CFH,
AGCH,
EHECCH=4x
yEGEC=8x2,
故選C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC中,∠ACB90°,∠A30°,BC6D,E分別是AB,AC邊的中點,將△ABC繞點B順時針旋轉60°到△ABC′的位置,則整個旋轉過程中線段DE所掃過部分的面積(即圖中陰影部分面積)為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A、B兩點在反比例函數(shù)yx0)的圖象上,其中k0,ACy軸于點CBDx軸于點D,且AC1

1)若k2,則AO的長為   ,△BOD的面積為   ;

2)若點B的橫坐標為k,且k1,當AOAB時,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A是反比例y(x0)的圖象上的一個動點,連接OAOBOA,且OB2OA,那么經(jīng)過點B的反比例函數(shù)圖象的表達式為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,AB=12,點E在邊BC上,BE=EC,將DCE沿DE對折至DFE,延長EF交邊AB于點G,連接DG、BF,給出下列結論:①△DAG≌△DFG;②BG=2AG;③△EBF∽△DEG;④SBEF=.其中正確結論的個數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線C1:y=ax2﹣4ax﹣5(a0).

(1)當a=1時,求拋物線與x軸的交點坐標及對稱軸;

(2)試說明無論a為何值,拋物線C1一定經(jīng)過兩個定點,并求出這兩個定點的坐標;

將拋物線C1沿這兩個定點所在直線翻折,得到拋物線C2,直接寫出C2的表達式;

(3)若(2)中拋物線C2的頂點到x軸的距離為2,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,EAD的中點,EFECABFABAE.問:AEFEFC是否相似?若相似,證明你的結論;若不相似,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC的直角邊BCx軸負半軸上,斜邊AC上的中線BD的反向延長線交y軸負半軸于點E,反比例函數(shù)y=﹣x0)的圖象過點A,則BEC的面積是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】求函數(shù)的最值.

查看答案和解析>>

同步練習冊答案