【題目】如圖,在正方形ABCD中,E、F分別是AB、CD的中點,EG⊥AF,FH⊥CE,垂足分別為G,H,設AG=x,圖中陰影部分面積為y,則y與x之間的函數(shù)關系式是( 。
A. y=3x2 B. y=4x2 C. y=8x2 D. y=9x2
【答案】C
【解析】
設正方形的邊長為2a,易證四邊形AFCE是平行四邊形,所以四邊形EHFG是矩形,由∠AEG=∠BCE得到等式,從而可用x表示出EG,接著用x表示EH,從而可求出y與x之間的關系式.
解:設正方形的邊長為2a,
∴BC=2a,BE=a,
∵E、F分別是AB、CD的中點,
∴AE=CF,
∵AE∥CF,
∴四邊形AFCE是平行四邊形,
∴AF∥CE,
∵EG⊥AF,FH⊥CE,
∴四邊形EHFG是矩形,
∵∠AEG+∠BEC=∠BCE+∠BEC=90°,
∴∠AEG=∠BCE,
∴tan∠AEG=tan∠BCE,
∴,
∴EG=2x,
∴由勾股定理可知:AE=x,
∴AB=BC=x,
∴CE=5x,
易證:△AEG≌△CFH,
∴AG=CH,
∴EH=EC-CH=4x,
∴y=EGEC=8x2,
故選C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,∠A=30°,BC=6,D,E分別是AB,AC邊的中點,將△ABC繞點B順時針旋轉60°到△A′BC′的位置,則整個旋轉過程中線段DE所掃過部分的面積(即圖中陰影部分面積)為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A、B兩點在反比例函數(shù)y=(x>0)的圖象上,其中k>0,AC⊥y軸于點C,BD⊥x軸于點D,且AC=1
(1)若k=2,則AO的長為 ,△BOD的面積為 ;
(2)若點B的橫坐標為k,且k>1,當AO=AB時,求k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A是反比例y=(x>0)的圖象上的一個動點,連接OA,OB⊥OA,且OB=2OA,那么經(jīng)過點B的反比例函數(shù)圖象的表達式為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,AB=12,點E在邊BC上,BE=EC,將△DCE沿DE對折至△DFE,延長EF交邊AB于點G,連接DG、BF,給出下列結論:①△DAG≌△DFG;②BG=2AG;③△EBF∽△DEG;④S△BEF=.其中正確結論的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線C1:y=ax2﹣4ax﹣5(a>0).
(1)當a=1時,求拋物線與x軸的交點坐標及對稱軸;
(2)①試說明無論a為何值,拋物線C1一定經(jīng)過兩個定點,并求出這兩個定點的坐標;
②將拋物線C1沿這兩個定點所在直線翻折,得到拋物線C2,直接寫出C2的表達式;
(3)若(2)中拋物線C2的頂點到x軸的距離為2,求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在矩形ABCD中,E為AD的中點,EF⊥EC交AB于F(AB>AE).問:△AEF與△EFC是否相似?若相似,證明你的結論;若不相似,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC的直角邊BC在x軸負半軸上,斜邊AC上的中線BD的反向延長線交y軸負半軸于點E,反比例函數(shù)y=﹣(x<0)的圖象過點A,則△BEC的面積是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com