【題目】在△ABC中,OEABOFACOE=OF

(1)如圖,當點OBC邊中點時,試說明AB=AC

(2)如圖,當點O在△ABC內部時,且OB=OC,試說明ABAC的關系;

(3)當點O在△ABC外部時,且OB=OC,試判斷ABAC的關系.(畫出圖形,寫出結果即可,無須說明理由)

【答案】見解析

【解析】試題分析:(1)證△BOE≌△COF,可得∠B=∠C,通過等角對等邊,得出AB=AC;

(2)與(1)類似,在證得△BOE≌△COF后,得∠OBE=∠OCF,OB=OC;則∠OBC=∠OCB,可證得∠ABC=∠ACB,根據(jù)等角對等邊得出AB=AC

(3)由前兩問的解答過程可知,BC的垂直平分線與∠A的角平分線重合時,AB=AC的結論才成立(等腰三角形三線合一).

試題解析:(1)證明:∵OE=OF,OB=OC,∴Rt△OBE≌Rt△OCF(HL),∴∠B=∠C,∴AB=AC

(2)AB=AC.證明如下

同(1)可證得Rt△OBE≌Rt△OCF,∴∠OBE=∠OCF

OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC

解:當BC的垂直平分線與∠A的平分線重合時,AB=AC成立,如圖①;

BC的垂直平分線與∠A的平分線不在一條直線上時,結論不成立,如圖②.(圖形不唯一,符合題意,畫圖規(guī)范即可)

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】感知:如圖1,在ABC中,∠ABC=42°,ACB=72°,點DAB上一點,EAC上一點,BE、CD相交于點F.

(1)若∠ACD=35°,ABE=20°,求∠BFC的度數(shù);

(2)若CD平分∠ACB,BE平分∠ABC,求∠BFC的度數(shù);

探究:如圖2,在ABC中,BE平分∠ABC,CD平分∠ACB寫出∠BFC與∠A之間的數(shù)量關系,并說明理由;

應用:如圖3,在ABC中,BD平分∠ABC ,CD平分外角∠ACE,請直接寫出∠BDC與∠A之間的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,王虎使一長為4 cm,寬為3 cm的長方形木板,在桌面上做無滑動地翻滾(順時針方向),木板上點A位置變化為AA1A2,其中第二次翻滾被桌面上一小木塊擋住,使木板與桌面成30°角,則點A翻滾到A2位置時共走過的路徑長為?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,D為△ABC的邊AB的延長線上一點,過DDF⊥AC,垂足為F,交BCE,BD=BE,求證:△ABC是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是()

A.相等的角是對頂角

B.在平面內,經(jīng)過一點有且只有一條直線與已知直線平行

C.兩條直線被第三條直線所截,內錯角相等

D.在平面內,經(jīng)過一點有且只有一條直線與已知直線垂直

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是( 。

A.1的平方根是﹣1

B.4的平方根是2

C.如果一個數(shù)有平方根,那么這個數(shù)的平方根一定有兩個

D.任何一個非負數(shù)的立方根都是非負數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】你能用一張長方形的紙片折出一個正三角形嗎?動手試一試,簡單敘述你的折法.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知AM∥CN,點B為平面內一點,AB⊥BC于B.

(1)如圖1,直接寫出∠A和∠C之間的數(shù)量關系________;

(2)如圖2,過點B作BD⊥AM于點D,求證:∠ABD=∠C;

(3)如圖3,在(2)問的條件下,點E、F在DM上,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1是一種包裝盒的表面展開圖,將它圍起來可得到一個幾何體的模型.

1)這個幾何體模型的名稱是

2)如圖2是根據(jù)a,b,h的取值畫出的幾何體的主視圖和俯視圖(圖中實線表示的長方形),請在網(wǎng)格中畫出該幾何體的左視圖.

3)若h=a+b,且a,b滿足a2+b2﹣a﹣6b+10=0,求該幾何體的表面積.

查看答案和解析>>

同步練習冊答案