【題目】在△ABC中,OE⊥AB,OF⊥AC且OE=OF.
(1)如圖,當點O在BC邊中點時,試說明AB=AC;
(2)如圖,當點O在△ABC內部時,且OB=OC,試說明AB與AC的關系;
(3)當點O在△ABC外部時,且OB=OC,試判斷AB與AC的關系.(畫出圖形,寫出結果即可,無須說明理由)
【答案】見解析
【解析】試題分析:(1)證△BOE≌△COF,可得∠B=∠C,通過等角對等邊,得出AB=AC;
(2)與(1)類似,在證得△BOE≌△COF后,得∠OBE=∠OCF,OB=OC;則∠OBC=∠OCB,可證得∠ABC=∠ACB,根據(jù)等角對等邊得出AB=AC;
(3)由前兩問的解答過程可知,BC的垂直平分線與∠A的角平分線重合時,AB=AC的結論才成立(等腰三角形三線合一).
試題解析:(1)證明:∵OE=OF,OB=OC,∴Rt△OBE≌Rt△OCF(HL),∴∠B=∠C,∴AB=AC.
(2)AB=AC.證明如下:
同(1)可證得Rt△OBE≌Rt△OCF,∴∠OBE=∠OCF.
∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC.
解:當BC的垂直平分線與∠A的平分線重合時,AB=AC成立,如圖①;
當BC的垂直平分線與∠A的平分線不在一條直線上時,結論不成立,如圖②.(圖形不唯一,符合題意,畫圖規(guī)范即可).
科目:初中數(shù)學 來源: 題型:
【題目】感知:如圖1,在△ABC中,∠ABC=42°,∠ACB=72°,點D是AB上一點,E是AC上一點,BE、CD相交于點F.
(1)若∠ACD=35°,∠ABE=20°,求∠BFC的度數(shù);
(2)若CD平分∠ACB,BE平分∠ABC,求∠BFC的度數(shù);
探究:如圖2,在△ABC中,BE平分∠ABC,CD平分∠ACB,寫出∠BFC與∠A之間的數(shù)量關系,并說明理由;
應用:如圖3,在△ABC中,BD平分∠ABC ,CD平分外角∠ACE,請直接寫出∠BDC與∠A之間的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,王虎使一長為4 cm,寬為3 cm的長方形木板,在桌面上做無滑動地翻滾(順時針方向),木板上點A位置變化為A→A1→A2,其中第二次翻滾被桌面上一小木塊擋住,使木板與桌面成30°角,則點A翻滾到A2位置時共走過的路徑長為?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是()
A.相等的角是對頂角
B.在平面內,經(jīng)過一點有且只有一條直線與已知直線平行
C.兩條直線被第三條直線所截,內錯角相等
D.在平面內,經(jīng)過一點有且只有一條直線與已知直線垂直
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( 。
A.﹣1的平方根是﹣1
B.4的平方根是2
C.如果一個數(shù)有平方根,那么這個數(shù)的平方根一定有兩個
D.任何一個非負數(shù)的立方根都是非負數(shù)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知AM∥CN,點B為平面內一點,AB⊥BC于B.
(1)如圖1,直接寫出∠A和∠C之間的數(shù)量關系________;
(2)如圖2,過點B作BD⊥AM于點D,求證:∠ABD=∠C;
(3)如圖3,在(2)問的條件下,點E、F在DM上,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1是一種包裝盒的表面展開圖,將它圍起來可得到一個幾何體的模型.
(1)這個幾何體模型的名稱是 .
(2)如圖2是根據(jù)a,b,h的取值畫出的幾何體的主視圖和俯視圖(圖中實線表示的長方形),請在網(wǎng)格中畫出該幾何體的左視圖.
(3)若h=a+b,且a,b滿足a2+b2﹣a﹣6b+10=0,求該幾何體的表面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com