【題目】已知等邊三角形ABC在平面直角坐標(biāo)系中的位置如圖所示,C(1,0),點A在y軸的正半軸上,把等邊三角形ABC沿x軸正半軸作無滑動的連續(xù)翻轉(zhuǎn),每次翻轉(zhuǎn)120°,經(jīng)過2018次翻轉(zhuǎn)之后,點C的坐標(biāo)是______.
【答案】(4036,)
【解析】
先求出第一次至第六次的點C坐標(biāo),探究規(guī)律后,利用規(guī)律解決問題.
解:第一次點C坐標(biāo)(1,0),第二次點C坐標(biāo)(4,),第三次點C坐標(biāo)(7,0),第四次點C坐標(biāo)(7,0),第五次點C坐標(biāo)(10,),第六次點C坐標(biāo)(13,0),…根據(jù)這個規(guī)律2018=672×3+2,
所以經(jīng)過2018次翻轉(zhuǎn)之后,點C的橫坐標(biāo)為672×3×2+4=4036,縱坐標(biāo)為,
所以點C坐標(biāo)是(4036,).
故答案為:(4036,).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C是圓上任意一點,點D是AC中點,OD交AC于點E,BD交AC于點F,若BF=1.25DF,則tan∠ABD的值為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,,連結(jié)AC,過點C作直線l∥AB,點P是直線l上的一個動點,直線PA與⊙O交于另一點D,連結(jié)CD,設(shè)直線PB與直線AC交于點E.
(1)求∠BAC的度數(shù);
(2)當(dāng)點D在AB上方,且CD⊥BP時,求證:PC=AC;
(3)在點P的運動過程中
①當(dāng)點A在線段PB的中垂線上或點B在線段PA的中垂線上時,求出所有滿足條件的∠ACD的度數(shù);
②設(shè)⊙O的半徑為6,點E到直線l的距離為3,連結(jié)BD,DE,直接寫出△BDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為發(fā)展校園足球運動,某縣城區(qū)四校決定聯(lián)合購買一批足球運動裝備,市場調(diào)查發(fā)現(xiàn):甲、乙兩商場以同樣的價格出售同種品牌的足球隊服和足球,已知每套隊服比每個足球多50元,兩套隊服與三個足球的費用相等,經(jīng)洽談,甲商場優(yōu)惠方案是:每購買十套隊服,送一個足球;乙商場優(yōu)惠方案是:若購買隊服超過80套,則購買足球打八折.
(1)求每套隊服和每個足球的價格是多少?
(2)若城區(qū)四校聯(lián)合購買100套隊服和a個足球,請用含a的式子分別表示出到甲商場和乙商場購買裝備所花的費用;
(3)假如你是本次購買任務(wù)的負責(zé)人,你認為到哪家商場購買比較合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將兩個全等的直角三角形ABC和DBE按圖方式擺放,其中,,點E落在AB上,DE所在直線交AC所在直線于點F.
求證:;
若將圖中的繞點B按順時針方向旋轉(zhuǎn)角a,且,其他條件不變,如圖請你直接寫出與DE的大小關(guān)系:______填“”或“”或“”
若將圖中的繞點B按順時針方向旋轉(zhuǎn)角,且,其他條件不變,如圖請你寫出此時AF、EF與DE之間的關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】鄂州市電信部門積極支持鄂州國際航空大都市的建設(shè),如圖,計劃修建一條連接B,C兩地的電纜,測量人員在山腳A測得B,C兩地的仰角分別為31°和45°,在B處測得C處的仰角為53°.已知C地比A地髙50m,則電纜BC至少需要多少米?(精確到1m,參考數(shù)據(jù):sin31°≈,tan31°≈,sin37°≈0.6,cos37°≈0.8)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,射線AP交⊙O于C點,∠PCO的平分線交⊙O于D點,過點D作交AP于E點.
(1)求證:DE為⊙O的切線;
(2)若DE=3,AC=8,求直徑AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有長為24m的籬笆,現(xiàn)一面利用墻(墻的最大可用長度a為10m)圍成中間隔有一道籬笆的長方形花圃,設(shè)花圃的寬AB為xm,面積為Sm2.
(1)求S與x的函數(shù)關(guān)系式及x值的取值范圍;
(2)要圍成面積為45m2的花圃,AB的長是多少米?
(3)當(dāng)AB的長是多少米時,圍成的花圃的面積最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2-x-(m+1)=0有兩個不相等的實數(shù)根.
(1)求m的取值范圍;
(2)若m為符合條件的最小整數(shù),求此方程的根.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com