精英家教網 > 初中數學 > 題目詳情

【題目】關于x的一元二次方程x2-x-m+1)=0有兩個不相等的實數根

1)求m的取值范圍;

2)若m為符合條件的最小整數,求此方程的根

【答案】1m>-;2x1=0,x2=1

【解析】

試題分析:1)根據的意義得到>0,即-1)2+4m+1)>0,然后解不等式即可得到m的取值范圍;

2)在1)中m的范圍內可得到m的最小整數為-1,則方程變?yōu)閤2-x=0,然后利用因式分解法解方程即可

試題解析:1)關于x的一元二次方程x2-x-m+1)=0有兩個不相等的實數根,

∴△=-1)2+4m+1)=5+4m>0,

m>-

2)m為符合條件的最小整數,

m=-1

原方程變?yōu)閤2-x=0,

xx-1)=0,

x1=0,x2=1

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知拋物線y=mx2-(m+5)x+5.

(1)求證:它的圖象與x軸必有交點,且過x軸上一定點;

(2)這條拋物線與x軸交于兩點A(x1,0),B(x2,0),0<x1<x2,(1) 中定點的直線L;y=x+ky軸于點D,AB=4,圓心在直線L上的⊙MA、B兩點,求拋物線和直線的關系式,AB與弧圍成的弓形面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,在梯形ABCD中,AD∥MN∥BC.MN分別交邊AB、DC于點M、N.如果AM:MB=2:3,AD=2,BC=7.求MN的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列運算正確的是( )
A.a6÷a2=a3
B.a3a2=a6
C.(3a32=6a6
D.a3﹣a3=0

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,⊙ORtABC的斜邊AB相切于點D,與直角邊AC相交于E、F兩點,連結DE,已知∠B=30°,O的半徑為12,弧DE的長度為

1)求證:DEBC

2)若AF=CE,求線段BC的長度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】若關于x的方程2x﹣m=x﹣2的解為x=3,則m的值為( )
A.﹣5
B.5
C.﹣7
D.7

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某鮮花銷售部在春節(jié)前20天內銷售一批鮮花.其中,該銷售部公司的鮮花批發(fā)部日銷售量y1(萬朵)與時間xx為整數,單位:天)關系為二次函數,部分對應值如表所示.與此同時,該銷售部還通過某網絡電子商務平臺銷售鮮花,網上銷售日銷售量y2(萬朵)與時間xx為整數,單位:天) 的函數關系如圖所示.

1)求y1x的二次函數關系式及自變量x的取值范圍;

2)求y2x的函數關系式及自變量x的取值范圍;

3)當8≤x≤20時,設該花木公司鮮花日銷售總量為y萬朵,寫出y與時間x的函數關系式,并判斷第幾天日銷售總量y最大,并求出此時的最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了測量校園水平地面上一棵不可攀的樹的高度,學校數學興趣小組做了如下探索:根據光的反射定律,利用一面鏡子和一根皮尺,設計如下圖所示的測量方案:把一面很小的鏡子水平放置在離B(樹底)8.4米的點E處,然后沿著直線BE后退到點D,這時恰好在鏡子里看到樹梢頂點A,再用皮尺量得DE=3.2米,觀察者目高CD=1.6米,求樹AB的高度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在一個20米高的樓頂上有一信號塔DC,某同學為了測量信號塔的高度,在地面的A處測得信號塔下端D的仰角為30°,然后他正對塔的方向前進了8米到達B處,又測得信號塔頂端C的仰角為45°,CEAB于點E,E、B、A在一條直線上.則信號塔CD的高度為(  )

A. 20 B. (208) C. (2028) D. (2020)

查看答案和解析>>

同步練習冊答案