【題目】如圖,BC是半⊙O的直徑,A是⊙O上一點,過點的切線交CB的延長線于點P,過點B的切線交CA的延長線于點E,AP與BE相交于點F.
(1)求證:BF=EF;
(2)若AF=,半⊙O的半徑為2,求PA的長度.
【答案】(1)見解析;(2).
【解析】
(1)連接OA,可得∠E+∠C=∠EAF+∠OAC=90°,再根據(jù)OA=OC,即可解答
(2)連接AB,可得∠OAP=∠OBE=90°,且BF=AF=1.5,根據(jù)三角函數(shù)求出PB=,
再證明△APB∽△CPA,即可解答
(1)證明:連接OA,
∵AF、BF為半⊙O的切線,
∴AF=BF,∠FAO=∠EBC=90°,
∴∠E+∠C=∠EAF+∠OAC=90°,
∵OA=OC,
∴∠C=∠OAC,
∴∠E=∠EAF,
∴AF=EF,
∴BF=EF;
(2)解:連接AB,
∵AF、BF為半⊙O的切線,
∴∠OAP=∠OBE=90°,且BF=AF=1.5,
又∵tan∠P= ,即 ,
∴PB= ,
∵∠PAE+∠OAC=∠AEB+∠OCA=90°,且∠OAC=∠OCA,
∴∠PAE=∠AEB,∠P=∠P,
∴△APB∽△CPA,
∴ ,即PA2=PBPC,
∴ ,解得PA= .
科目:初中數(shù)學 來源: 題型:
【題目】草莓是云南多地盛產(chǎn)的一種水果,今年某水果銷售店在草莓銷售旺季,試銷售成本為每千克20元的草莓,規(guī)定試銷期間銷售單價不低于成本單價,也不高于每千克40元,經(jīng)試銷發(fā)現(xiàn),銷售量y(千克)與銷售單價x(元)符合一次函數(shù)關系,如圖是y與x的函數(shù)關系圖象.
(1)求y與x的函數(shù)解析式;
(2)設該水果銷售店試銷草莓獲得的利潤為W元,求W的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們把三邊長的比為3∶4∶5的三角形稱為完全三角形.記命題A: “完全三角形是直角三角形”.若命題B是命題A的逆命題,請寫出命題B: _________________________;并寫出一個例子(該例子能判斷命題B是錯誤的):________________________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長方形ABCD的邊BC在直線l上,AD=5,AB=3,P為直線l上的點,且△ADP是腰長為5的等腰三角形,則BP=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是一座古拱橋的截面圖,拱橋橋洞的上沿是拋物線形狀,當水面的寬度為10m時,橋洞與水面
的最大距離是5m.
(1)經(jīng)過討論,同學們得出三種建立平面直角坐標系的方案(如下圖)
你選擇的方案是_____(填方案一,方案二,或方案三),則B點坐標是______,求出你所選方案中的拋物線的表達式;
(2)因為上游水庫泄洪,水面寬度變?yōu)?/span>6m,求水面上漲的高度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線的頂點為,與軸相交于點,對稱軸為直線,點是線段的中點.
(1)求拋物線的表達式;
(2)寫出點的坐標并求直線的表達式;
(3)設動點,分別在拋物線和對稱軸l上,當以,,,為頂點的四邊形是平行四邊形時,求,兩點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將點A(4,0)繞著原點O順時針方向旋轉(zhuǎn)60°角得到對應點A',則點A' 的坐標是 ( )
A. (4,-2)B. (2,)C. (2,)D. (,-2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在△ABC中,AC=3,BC=4,AB=5,點P在AB上(不與A、B重合),過P作PE⊥AC,PF⊥BC,垂足分別是E、F,連接EF,M為EF的中點.
(1)請判斷四邊形PECF的形狀,并說明理由;
(2)隨著P點在AB上位置的改變,CM的長度是否也會改變?若不變,求CM的長度;若有變化,求CM的變化范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某區(qū)規(guī)定學生每天戶外體育活動時間不少于1小時.為了解學生參加戶外體育活動的情況,對部分學生每天參加戶外體育活動的時間進行了隨機抽樣調(diào)查,并將調(diào)查結(jié)果繪制成如下的統(tǒng)計表(不完整).
組別 | 時間(小時) | 頻數(shù)(人數(shù)) | 頻率 |
A | 0≤t<0.5 | 20 | 0.05 |
B | 0.5≤t<1 | a | 0.3 |
C | 1≤t<1.5 | 140 | 0.35 |
D | 1.5≤t<2 | 80 | 0.2 |
E | 2≤t<2.5 | 40 | 0.1 |
請根據(jù)圖表中的信息,解答下列問題:
(1)表中的a= ,將頻數(shù)分布直方圖補全;
(2)該區(qū)8000名學生中,每天戶外體育活動的時間不足1小時的學生大約有多少名?
(3)若從參加戶外體育活動時間最長的3名男生和1名女生中隨機抽取兩名,請用畫樹狀圖或列表法求恰好抽到1名男生和1名女生的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com