【題目】如圖,某大樓的頂部豎有一塊廣告牌CD,小李在山坡的坡腳A處測得廣告牌底部D的仰角為60°沿坡面AB向上走到B處測得廣告牌頂部C的仰角為45°,已知山坡AB的傾斜角∠BAH=30°,AB=20米,AB=30米.
(1)求點B距水平面AE的高度BH;
(2)求廣告牌CD的高度.
【答案】(1) BH為10米;(2) 宣傳牌CD高約(40﹣20)米
【解析】
(1)過B作DE的垂線,設(shè)垂足為G.分別在Rt△ABH中,通過解直角三角形求出BH、AH;
(2)在△ADE解直角三角形求出DE的長,進(jìn)而可求出EH即BG的長,在Rt△CBG中,∠CBG=45°,則CG=BG,由此可求出CG的長然后根據(jù)CD=CG+GE-DE即可求出宣傳牌的高度.
(1)過B作BH⊥AE于H,
Rt△ABH中,∠BAH=30°,
∴BH=AB=×20=10(米),
即點B距水平面AE的高度BH為10米;
(2)過B作BG⊥DE于G,
∵BH⊥HE,GE⊥HE,BG⊥DE,
∴四邊形BHEG是矩形.
∵由(1)得:BH=10,AH=10,
∴BG=AH+AE=(10+30)米,
Rt△BGC中,∠CBG=45°,
∴CG=BG=(10+30)米,
∴CE=CG+GE=CG+BH=10+30+10=10+40(米),
在Rt△AED中,
=tan∠DAE=tan60°=,
DE=AE=30
∴CD=CE﹣DE=10+40﹣30=40﹣20.
答:宣傳牌CD高約(40﹣20)米.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2017年歌舞劇《白毛女》將在廣州歌舞劇院公演,對團(tuán)體購買門票實行優(yōu)惠,決定在原定票價基礎(chǔ)上每張降價元,這樣按原定票價需花費元購買的門票現(xiàn)在只需花費了元就可以買到了.
(1)求每張門票的原定票價;
(2)根據(jù)實際情況,活動組織單位決定對于個人購票也采取優(yōu)惠政策,原定票價經(jīng)過連續(xù)兩次降價后降為元,求平均每次降價的百分率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的邊AB是⊙O的直徑,點C在⊙O上,已知AC=6cm,BC=8cm,點P、Q分別在邊AB、BC上,且點P不與點A、B重合,BQ=kAP(k>0),聯(lián)接PC、PQ.
(1)求⊙O的半徑長;
(2)當(dāng)k=2時,設(shè)AP=x,△CPQ的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;
(3)如果△CPQ與△ABC相似,且∠ACB=∠CPQ,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=α(90°<α<180°),將△ABC繞著點A逆時針旋轉(zhuǎn)2β(0°<β<90°)后得△AED,其中點E、D分別和點B、C對應(yīng),聯(lián)結(jié)CD,如果CD⊥ED,請寫出一個關(guān)于α與β的等量關(guān)系的式子_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一條筆直的公路上有AB兩地,小明騎自行車從A地去B地,小剛騎電動車從B地去A地然后立即原路返回到B地,如圖是兩人離B地的距離y(千米)和行駛時間x(小時)之間的函數(shù)圖象.請根據(jù)圖象回答下列問題:
(1)AB兩地的距離是_____,小明行駛的速度是_____.
(2)若兩人間的距離不超過3千米時,能夠用無線對講機保持聯(lián)系,那么小剛從A地原路返回到B地途中,兩人能夠用無線對講機保持聯(lián)系的x的取值范圍是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線與x軸交于點B,與y軸交于點C,拋物線
與x軸交于A、B兩點(A在B的左側(cè)),與y軸交于點C.
(1)求拋物線的解析式;
(2)點M是上述拋物線上一點,如果△ABM和△ABC相似,求點M的坐標(biāo);
(3)連接AC,求頂點D、E、F、G在△ABC各邊上的矩形DEFC面積最大時,寫出該矩形在AB邊上的頂點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在體育中考項目中考生可在籃球、排球中選考一項.小明為了選擇一項參加體育中考,將自己的10次測驗成績進(jìn)行比較并制作了折線統(tǒng)計圖,依據(jù)圖中信息小明選擇哪一項參加體育中考更合適,并說明理由,______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在中,,,點為射線上一點(與點不重合),過點作于點,且(點與點在射線同側(cè)),連接,.
(1)如圖1,當(dāng)點在線段上時,請直接寫出的度數(shù).
(2)當(dāng)點在線段的延長線上時,依題意在圖2中補全圖形并判斷(1)中結(jié)論是否成立?若成立,請證明;若不成立,請說明理由.
(3)在(1)的條件下,與相交于點,若,直接寫出的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O上一點,過點C作⊙O的切線,交BA的延長線交于點D,過點B作BE⊥BA,交DC延長線于點E,連接OE,交⊙O于點F,交BC于點H,連接AC。
(1)求證:∠ECB=∠EBC;
(2)連接BF,CF,若CF=6,sin∠FCB=,求AC的長。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com