【題目】“五一”小長假,小穎和小梅兩家計劃從“北京天安門”“三亞南山”“內蒙古大草原”三個景區(qū)中任意選擇一景區(qū)游玩,小穎和小梅制作了如下三張質地大小完全相同的卡片,背面朝上洗勻后各自從中抽去一張來確定游玩景區(qū)(第一人抽完放回洗勻后另一人再抽去),則兩人抽到同一景區(qū)的概率是(
A.
B.
C.
D.

【答案】B
【解析】解:分別用A,B,C表示“北京天安門”“三亞南山”“內蒙古大草原”三個景區(qū),畫樹狀圖得:
∵共有9種等可能的結果,兩人抽到同一景區(qū)的有3種情況,
∴兩人抽到同一景區(qū)的概率是: =
故選B.
【考點精析】認真審題,首先需要了解列表法與樹狀圖法(當一次試驗要設計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結果,通常采用樹狀圖法求概率).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC,AB=AC=5,BC=8,∠PDQ的頂點D在BC邊上,DP交AB邊于點E,DQ交AB邊于點O且交CA的延長線于點F(點F與點A不重合),設∠PDQ=∠B,BD=3.

(1)求證:△BDE∽△CFD;
(2)設BE=x,OA=y,求y關于x的函數(shù)關系式,并寫出定義域;
(3)當△AOF是等腰三角形時,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀與思考 婆羅摩笈多(Brahmagupta),是一位印度數(shù)學家和天文學家,書寫了兩部關于數(shù)學和天文學的書籍,他的一些數(shù)學成就在世界數(shù)學史上有較高的地位,他的負數(shù)概念及加減法運算僅晚于中國《九章算術》,而他的負數(shù)乘除法法則在全世界都是領先的,他還提出了著名的婆羅摩笈多定理,該定理的內容及部分證明過程如下:
已知:如圖1,四邊形ABCD內接于⊙O,對角線AC⊥BD于點P,PM⊥AB于點M,延長MP交CD于點N,求證:CN=DN.
證明:在△ABP和△BMP中,∵AC⊥BD,PM⊥AB,
∴∠BAP+∠ABP=90°,∠BPM+∠MBP=90°.
∴∠BAP=∠BPM.
∵∠DPN=∠BPM,∠BAP=∠BDC.
∴…

(1)請你閱讀婆羅摩笈多定理的證明過程,完成剩余的證明部分.
(2)已知:如圖2,△ABC內接于⊙O,∠B=30°,∠ACB=45°,AB=2,點D在⊙O上,∠BCD=60°,連接AD,與BC交于點P,作PM⊥AB于點M,延長MP交CD于點N,則PN的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為解決“最后一公里”的交通接駁問題,北京市投放了大量公租自行車供市民使用.到2013年底,全市已有公租自行車25 000輛,租賃點600個.預計到2015年底,全市將有公租自行車50 000輛,并且平均每個租賃點的公租自行車數(shù)量是2013年底平均每個租賃點的公租自行車數(shù)量的1.2倍.預計到2015年底,全市將有租賃點多少個?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明騎車從家出發(fā),先向東騎行1km到達A村,繼續(xù)向東騎行4km到達B村,然后向西騎行8km到達C村,最后回到家.

1) 以快遞公司為原點,以向東方向為正方向,用1 cm表示1 km,畫出數(shù)軸,并在數(shù)軸上表示出AB、C三個店的位置;

2C店離A店有多遠?

3) 快遞員一共騎行了多少千米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】當﹣2≤x≤1時,二次函數(shù)y=﹣(x﹣m)2+m2+1有最大值4,則實數(shù)m的值為(
A.﹣
B.
C.2或
D.2或

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算下列各題
(1)計算: +( 2﹣4cos45°;
(2)化簡:(x+2)2﹣x(x﹣3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】山西綿山是中國歷史文化名山,因春秋時期晉國介子推攜母隱居于此被焚而著稱,如圖1,是綿山上介子推母子的塑像,某游客計劃測量這座塑像的高度,由于游客無法直接到達塑像底部,因此該游客計劃借助坡面高度來測量塑像的高度;如圖2,在塑像旁山坡坡腳A處測得塑像頭頂C的仰角為75°,當從A處沿坡面行走10米到達P處時,測得塑像頭頂C的仰角剛好為45°,已知山坡的坡度i=1:3,且O,A,B在同一直線上,求塑像的高度.(側傾器高度忽略不計,結果精確到0.1米,參考數(shù)據(jù):cos75°≈0.3,tan75°≈3.7, ≈1.4, ≈1.7, ≈3.2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】圖中的數(shù)陣是由全體正奇數(shù)排成的.

(1)圖中平行四邊形框內的九個數(shù)之和與中間的數(shù)有什么關系?

(2)在圖中任意作一個類似(1)中的平行四邊形框,這九個數(shù)之和還有這種規(guī)律嗎?請說出理由.這九個數(shù)之和能等于2 016嗎?2 015,2 025呢?若能,請寫出這九個數(shù)中最小的一個;若不能,請說出理由.

查看答案和解析>>

同步練習冊答案