【題目】如下圖所示,在相距100米的A,B兩處觀測工廠C,測得∠BAC=60°,∠ABC=45°,則A,B兩處到工廠C的距離分別是多少?
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,現(xiàn)有兩點M、N分別從點A、點B同時出發(fā),沿三角形的邊運動,已知點M的速度為每秒1個單位長度,點N的運度為每秒2個單位長度當(dāng)點M第一次到達B點時,M、N同時停止運動.
點M、N運動幾秒后,M、N兩點重合?
點M、N運動幾秒后,可得到等邊三角形?
當(dāng)點M、N在BC邊上運動時,能否得到以MN為底邊的等腰?如存在,請求出此時M、N運動的時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售一種商品,進價為每個20元,規(guī)定每個商品售價不低于進價,且不高于60元.經(jīng)調(diào)查發(fā) 現(xiàn),每天的銷售量y(個)與每個商品的售價x(元)滿足一次函數(shù)關(guān)系,其部分?jǐn)?shù)據(jù)如下表所示:
(1)求y與x之間的函數(shù)關(guān)系式;
(2)設(shè)商場每天獲得的總利潤為w(元),求w與x之間的函數(shù)關(guān)系式;
(3)不考慮其他因素,當(dāng)商品的售價為多少元時,商場每天獲得的總利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在網(wǎng)格中有一個四邊形圖案.
(1)請你分別畫出△ABC繞點O順時針旋轉(zhuǎn)90°的圖形,關(guān)于點O對稱的圖形以及逆時針旋轉(zhuǎn)90°的圖形,并將它們涂黑;
(2)若網(wǎng)格中每個小正方形的邊長為1,旋轉(zhuǎn)后點A的對應(yīng)點依次為A1,A2,A3,求四邊形AA1A2A3的面積;
(3)這個美麗圖案能夠說明一個著名結(jié)論的正確性,請寫出這個結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,△ABC為等邊三角形,其中點A,B,C的坐標(biāo)分別為(-3,-1),(-3,-3),(-3+,-2).現(xiàn)以y軸為對稱軸作△ABC的對稱圖形,得△A1B1C1,再以x軸為對稱軸作△A1B1C1的對稱圖形,得△A2B2C2.
(1)直接寫出點C1,C2的坐標(biāo).
(2)能否通過一次旋轉(zhuǎn)將△ABC旋轉(zhuǎn)到△A2B2C2的位置?若能,請直接寫出所旋轉(zhuǎn)的度數(shù);若不能,請說明理由.
(3)設(shè)當(dāng)△ABC的位置發(fā)生變化時,△A2B2C2,△A1B1C1與△ABC之間的對稱關(guān)系始終保持不變.
①當(dāng)△ABC向上平移多少個單位長度時,△A1B1C1與△A2B2C2完全重合?并直接寫出此時點C的坐標(biāo);
②將△ABC繞點A順時針旋轉(zhuǎn)α°(0≤α≤180),使△A1B1C1與△A2B2C2完全重合,此時α的值為多少?點C的坐標(biāo)又是什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線 與雙曲線 交于、兩點,已知點,點.
(1)求直線和雙曲線的解析式;
(2)把直線沿軸負方向平移2個單位后得到直線,直線與雙曲線交于、兩點,當(dāng)時,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】AD是△BAC的角平分線,過D向AB、AC兩邊作垂線,垂足為E、F,則下列錯誤的是( )
A.DE=DFB.AE=AFC.BD=CDD.∠ADE=∠ADF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線,點E是AD的中點,過點A作AF∥BC交BE的延長線于F,連接CF.
(1)求證:△AEF≌△DEB;
(2)若∠BAC=90°,求證:四邊形ADCF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個長方體形盒子的長、寬、高分別為4cm,4cm,6cm
(1)一只螞蟻想從盒底的點A沿盒的表面爬到盒頂?shù)狞cB,請你幫螞蟻設(shè)計一條最短的路線,螞蟻要爬行的最短路線是多少?
(2)若將一根木棒放進盒子里并能蓋上蓋子,則能放入該盒子里的木棒的最大長度是多少cm ? (結(jié)果可保留根號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com