【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線與x軸相交于,C兩點(diǎn)與y軸相交于點(diǎn)B.
a0, 填“”或“” ;
若該拋物線關(guān)于直線對(duì)稱,求拋物線的函數(shù)表達(dá)式;
在的條件下,若點(diǎn)M為第三象限內(nèi)拋物線上一動(dòng)點(diǎn),點(diǎn)M的橫坐標(biāo)為的面積為求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值;
在的條件下,若點(diǎn)P是拋物線上的動(dòng)點(diǎn),點(diǎn)Q是直線上的動(dòng)點(diǎn),判斷有幾個(gè)位置能夠使以點(diǎn)P、Q、B、O為頂點(diǎn)的四邊形為平行四邊形,直接寫(xiě)出相應(yīng)的點(diǎn)Q的坐標(biāo).
【答案】; ;(2); S關(guān)于m的函數(shù)關(guān)系式為; 時(shí),S有最大值; 坐標(biāo)為或 , 或 , 或.
【解析】試題分析: 由開(kāi)口向上,可知圖象與軸有兩個(gè)交點(diǎn),則
由對(duì)稱軸可知點(diǎn)坐標(biāo),然后把點(diǎn)的坐標(biāo)代入函數(shù)解析式,利用待定系數(shù)法求解即可;
根據(jù)圖形的割補(bǔ)法,可得二次函數(shù),根據(jù)拋物線的性質(zhì)求出第三象限內(nèi)二次函數(shù)的最值,然后即可得解;
試題解析: ; ;
拋物線關(guān)于直線對(duì)稱, ,
將兩點(diǎn)代入函數(shù)解析式,得
,
解得,
所以此函數(shù)解析式為: ;
點(diǎn)的橫坐標(biāo)為m,且點(diǎn)M在這條拋物線上,
點(diǎn)的坐標(biāo)為: ,
,
,
當(dāng)時(shí),S有最大值為: ,
答:S關(guān)于m的函數(shù)關(guān)系式為; 時(shí),S有最大值;
坐標(biāo)為或 , 或 , 或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖,AB∥CD,AE交CD于點(diǎn)C,DE⊥AE,垂足為E,∠A=30°,求∠D的度數(shù).
(2)如圖,E,C在BF上,AB=DE,AC=DF,BE=CF,試說(shuō)明:AC∥DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,E,F分別是AB,DC上的點(diǎn),且,連接DE,BF,AF.
(1)求證:四邊形DEBF是平行四邊形;
(2)若AF平分,求AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一條東西方向筆直的沿湖道路l上有A、B兩個(gè)游船碼頭,觀光島嶼C在碼頭A的北偏東60°方向、在碼頭B的北偏西45°方向,AC=4千米.那么碼頭A、B之間的距離等于_____千米.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為支援雅安災(zāi)區(qū),某學(xué)校計(jì)劃用“義捐義賣(mài)”活動(dòng)中籌集的部分資金用于購(gòu)買(mǎi)A,B兩種型號(hào)的學(xué)習(xí)用品共1000件,已知A型學(xué)習(xí)用品的單價(jià)為20元,B型學(xué)習(xí)用品的單價(jià)為30元.
(1)若購(gòu)買(mǎi)這批學(xué)習(xí)用品用了26000元,則購(gòu)買(mǎi)A,B兩種學(xué)習(xí)用品各多少件?
(2)若購(gòu)買(mǎi)這批學(xué)習(xí)用品的錢(qián)不超過(guò)28000元,則最多購(gòu)買(mǎi)B型學(xué)習(xí)用品多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列解方程組的部分過(guò)程,回答下列問(wèn)題
解方程組
現(xiàn)有兩位同學(xué)的解法如下:
解法一;由①,得x=2y+5,③
把③代入②,得3(2y+5)﹣2y=3.……
解法二:①﹣②,得﹣2x=2.……
(1)解法一使用的具體方法是________,解法二使用的具體方法是______,以上兩種方法的共同點(diǎn)是________.
(2)請(qǐng)你任選一種解法,把完整的解題過(guò)程寫(xiě)出來(lái)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于,兩點(diǎn).
Ⅰ試確定上述反比例函數(shù)和一次函數(shù)的表達(dá)式;
Ⅱ連OB,在x軸上取點(diǎn)C,使,并求的面積;
Ⅲ直接寫(xiě)出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠MON=90,A是∠MON內(nèi)部的一點(diǎn),過(guò)點(diǎn)A作AB⊥ON,垂點(diǎn)為點(diǎn)B,AB=3厘米,OB=4厘米,動(dòng)點(diǎn)E、F同時(shí)從O點(diǎn)出發(fā),點(diǎn)E以1.5厘米/秒的速度沿ON方向運(yùn)動(dòng),點(diǎn)F以2厘米/秒的速度沿OM方向運(yùn)動(dòng),EF與OA交于點(diǎn)C,連接AE,當(dāng)點(diǎn)E到達(dá)點(diǎn)B時(shí),點(diǎn)F隨之停止運(yùn)動(dòng)。設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0)。
(1)當(dāng)t=1秒時(shí),ΔEOF與ΔABO是否相似?請(qǐng)說(shuō)明理由。
(2)在運(yùn)動(dòng)過(guò)程中,不論t取何值時(shí),總有EF⊥OA,為什么?
(3)連接AF,在運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻t,使得SΔAEF=S四邊形ABOF ?若存在,請(qǐng)求出此時(shí)t的值;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,三角形記作在方格中,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,先將向上平移3個(gè)單位長(zhǎng)度,再向右平移2個(gè)單位長(zhǎng)度,得到.
三個(gè)頂點(diǎn)的坐標(biāo)分別是:______,______,______,
在圖中畫(huà)出;
平移后的三個(gè)頂點(diǎn)坐標(biāo)分別為:______、______、______;
若y軸有一點(diǎn)P,使與面積相等,則P點(diǎn)的坐標(biāo)為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com