【題目】探究題.
已知:如圖.
求證:
老師要求學(xué)生在完成這道教材上的題目證明后,嘗試對(duì)圖形進(jìn)行變式,繼續(xù)做拓展探究,看看有什么新發(fā)現(xiàn)?
(1)小穎首先完成了對(duì)這道題的證明,在證明過(guò)程中她用到了平行線的一條性質(zhì),小穎用到的平行線性質(zhì)可能是_________.
(2)接下來(lái),小穎用《幾何畫(huà)板》對(duì)圖形進(jìn)行了變式,她先畫(huà)了兩條平行線然后在平行線間畫(huà)了一點(diǎn),連接后,用鼠標(biāo)拖動(dòng)點(diǎn)分別得到了圖①②③,小穎發(fā)現(xiàn)圖②正是上面題目的原型,于是她由上題的結(jié)論猜想到圖①和③中的與之間也可能存在著某種數(shù)量關(guān)系于是她利用《幾何畫(huà)板》的度量與計(jì)算功能,找到了這三個(gè)角之間的數(shù)量關(guān)系.
請(qǐng)你在小穎操作探究的基礎(chǔ)上,繼續(xù)完成下面的問(wèn)題:
①猜想圖①中與之間的數(shù)量關(guān)系并加以證明:
②補(bǔ)全圖③,直接寫(xiě)出與之間的數(shù)量關(guān)系:_______.
(3)學(xué)以致用:一個(gè)小區(qū)大門(mén)欄桿的平面示意圖如圖所示,垂直地面于平行于地面
,若,則_______.
【答案】(1)兩直線平行同旁內(nèi)角互補(bǔ);(2)①∠BDF=∠B+∠F.理由見(jiàn)解析;②∠F=∠D+∠F;(3)120°.
【解析】
(1)利用平行線的性質(zhì)證明即可.
(2)①結(jié)論:∠BDF=∠B+∠F.如圖①中,作DK∥AB.利用平行線的性質(zhì)證明即可.
②如圖③中,結(jié)論:∠F=∠D+∠B.(答案不唯一).利用平行線的性質(zhì)以及三角形的外角的性質(zhì)證明即可.
(3)利用圖1中的結(jié)論,計(jì)算即可.
(1)證明:如圖1中,
∵AB∥EF,CD∥EF,
∴CD∥EF,
∴∠B+∠CDB=180°,∠F+∠CDF=180°(兩直線平行同旁內(nèi)角互補(bǔ)),
∴∠B+∠CDB+∠CDF+∠F=360°,
∴∠B+∠BDF+∠F=360°,
故答案為:兩直線平行同旁內(nèi)角互補(bǔ).
(2)解:①結(jié)論:∠BDF=∠B+∠F.
理由:如圖①中,作DK∥AB.
∵AB∥DK,AB∥EF,
∴DK∥EF,
∴∠B=∠BDK,∠F=∠FDK,
∴∠BDF=∠BDK+∠FDK=∠B+∠F.
②如圖③中,結(jié)論:∠F=∠D+∠B.(答案不唯一).
理由:∵AB∥EF,
∴∠1=∠F,
∵∠1=∠B+∠D,
∴∠F=∠D+∠B.
故答案為∠F=∠D+∠F.
(3)解:如圖2中,
∵BA⊥AE,
∴∠BAE=90°,
∵∠ABC+∠BAE+∠BCD=360°,∠BCD=150°,
∴∠ABC=360°-240°=120°,
故答案為120°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平行四邊形可以看成是線段平移得到的圖形,如圖1,將線段AD沿AB的方向平移AB個(gè)單位至BC處,就可以得到平行四邊形ABCD,或者將線段AB沿AD的方向平移AD個(gè)單位至DC處,也可以得到平行四邊形ABCD.
(1)在圖2,圖3,圖4中,給出平行四邊形ABCD的頂點(diǎn)A,B,D的坐標(biāo),寫(xiě)出圖2,圖3,圖4中的頂點(diǎn)C的坐標(biāo),它們分別是_____,_______,_______;
(2)通過(guò)對(duì)圖2,3,4的觀察和頂點(diǎn)C的坐標(biāo)的探究,你會(huì)發(fā)現(xiàn):無(wú)論平行四邊形ABCD處于直角坐標(biāo)系中哪個(gè)位置,當(dāng)其頂點(diǎn)坐標(biāo)為A(a,b),B(c,d),C(m,n),D(e,f)(如圖5)時(shí),則四個(gè)頂點(diǎn)的橫坐標(biāo)a,c,m,e之間的等量關(guān)系為______;縱坐標(biāo)b,d,n,f之間的等量關(guān)系為_______(不必證明);
(3)如圖6,在平面直角坐標(biāo)系中,已知A(﹣3,0),B(3,0),C(2,4),則以A,B,C三個(gè)點(diǎn)為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列運(yùn)算正確的個(gè)數(shù)是( )
①2a2﹣a2=a2;
② + =2 ;
③(π﹣3.14)0× =0;
④a2÷a× =a2;
⑤sin30°+cos60°= ;
⑥精確到萬(wàn)位6295382≈6.30×106 .
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠A=90°,∠C=30°,AD⊥BC于D,BE是∠ABC的平分線,且交AD于P,如果AP=2,則AC的長(zhǎng)為( )
A. 2 B. 4 C. 6 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為BC邊的中點(diǎn),過(guò)點(diǎn)D作DE⊥AB,DF⊥AC,垂足分別為E、F.
(1)求證;DE=DF;
(2)若∠A=90°,圖中與DE相等的還有哪些線段?(不用說(shuō)明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)B、F、C、E在直線l上(F、C之間不能直接測(cè)量),點(diǎn)A、D在l異側(cè),測(cè)得AB=DE,AB∥DE,∠A=∠D.
(1)求證:△ABC≌△DEF;
(2)若BE=10m,BF=3m,求FC的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,△ACB與△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,點(diǎn)D為AB邊上的一點(diǎn).
(1)求證:△BCD≌△ACE;
(2)若AE=12,DE=15,求AB的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各式,屬于二元一次方程的個(gè)數(shù)有( 。
①xy+2x﹣y=7;②4x+1=x﹣y;③+y=5;④x=y;⑤x2﹣y2=2;⑥6x﹣2y;⑦x+y+z=1;⑧y(y﹣1)=2x2﹣y2+xy
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果兩個(gè)角的差的絕對(duì)值等于90°,就稱(chēng)這兩個(gè)角互為垂角,其中一個(gè)角叫另一個(gè)角的垂角.
(1)如圖1,O為直線AB上一點(diǎn),∠AOC=90°,∠EOD=90°,直接寫(xiě)出圖中∠BOE的垂角為 ;
(2)如果一個(gè)角的垂角等于這個(gè)角的補(bǔ)角的,求這個(gè)角的度數(shù);
(3)如圖2,O為直線AB上一點(diǎn),∠AOC=75°,將整個(gè)圖形繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)n°(0<n<180),直線AB旋轉(zhuǎn)到A1B1,OC旋轉(zhuǎn)到OC1,作射線OP,使∠BOP=∠BOB′,試直接寫(xiě)出當(dāng)n= 時(shí),∠POA1與∠AOC1互為垂角.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com