【題目】如圖所示,△ACB與△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,點(diǎn)D為AB邊上的一點(diǎn).
(1)求證:△BCD≌△ACE;
(2)若AE=12,DE=15,求AB的長度.
【答案】
(1)證明:∵△ACB與△ECD都是等腰直角三角形,
∴CE=CD,AC=BC,∠ACB=∠ECD=90°,∠B=∠BAC=45°,
∴∠ACE=∠BCD=90°﹣∠ACD,
在△ACE和△BCD中,
,
∴△BCD≌△ACE(SAS)
(2)解:∵△BCD≌△ACE,
∴BD=AE=12,∠EAC=∠B=45°,
∴∠EAD=45°+45°=90°,
在Rt△EAD中,由勾股定理得:AD= = =9,
∴AB=BD+AD=12+9=21.
【解析】(1)利用等腰直角三角形的性質(zhì)得出CE=CD,AC=BC,∠ACB=∠ECD=90°,∠B=∠BAC=45°,根據(jù)等式的性質(zhì)得出∠ACE=∠BCD=90°﹣∠ACD,然后利用SAS判斷出△BCD≌△ACE;(2)由全等三角形的性質(zhì)得BD=AE=12,∠EAC=∠B=45°進(jìn)而得出∠EAD=45°+45°=90°,在Rt△EAD中,由勾股定理得AD的長度,進(jìn)而得出答案。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一組數(shù)據(jù)6,3,4,7,6,3,5,6,求:
(1)這組數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù);
(2)這組數(shù)據(jù)的方差和標(biāo)準(zhǔn)差.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊△ABC中,D是AC邊上一點(diǎn),連接BD,將△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到△BAE,連接ED,若BC=5,BD=4,有下列結(jié)論:①AE∥BC;②∠ADE=∠BDC;③△BDE是等邊三角形;④△ADE的周長是9.其中正確的個(gè)數(shù)是( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究題.
已知:如圖.
求證:
老師要求學(xué)生在完成這道教材上的題目證明后,嘗試對(duì)圖形進(jìn)行變式,繼續(xù)做拓展探究,看看有什么新發(fā)現(xiàn)?
(1)小穎首先完成了對(duì)這道題的證明,在證明過程中她用到了平行線的一條性質(zhì),小穎用到的平行線性質(zhì)可能是_________.
(2)接下來,小穎用《幾何畫板》對(duì)圖形進(jìn)行了變式,她先畫了兩條平行線然后在平行線間畫了一點(diǎn),連接后,用鼠標(biāo)拖動(dòng)點(diǎn)分別得到了圖①②③,小穎發(fā)現(xiàn)圖②正是上面題目的原型,于是她由上題的結(jié)論猜想到圖①和③中的與之間也可能存在著某種數(shù)量關(guān)系于是她利用《幾何畫板》的度量與計(jì)算功能,找到了這三個(gè)角之間的數(shù)量關(guān)系.
請(qǐng)你在小穎操作探究的基礎(chǔ)上,繼續(xù)完成下面的問題:
①猜想圖①中與之間的數(shù)量關(guān)系并加以證明:
②補(bǔ)全圖③,直接寫出與之間的數(shù)量關(guān)系:_______.
(3)學(xué)以致用:一個(gè)小區(qū)大門欄桿的平面示意圖如圖所示,垂直地面于平行于地面
,若,則_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,連結(jié)CE交AD于點(diǎn)F,連結(jié)BD交CE于點(diǎn)G,連結(jié)BE.下列結(jié)論:①CE=BD;②△ADC是等腰直角三角形;③∠ADB=∠AEB;④S四邊形BCDE=BD·CE;⑤BC2+DE2=BE2+CD2.其中正確的結(jié)論有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E、F是邊長為4的正方形ABCD邊AD、AB上的動(dòng)點(diǎn),且AF=DE,BE交CF于點(diǎn)P,在點(diǎn)E、F運(yùn)動(dòng)的過程中,PA的最小值為( )
A.2
B.2
C.4 ﹣2
D.2 ﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AD⊥BC于點(diǎn)D,且BD=DC,E是BC延長線上一點(diǎn),且點(diǎn)C在AE的垂直平分線上.有下列結(jié)論:
①AB=AC=CE;②AB+BD=DE;③AD=AE;④BD=DC=CE.
其中,正確的結(jié)論是( 。
A. 只有 B. 只有
C. 只有 D. 只有
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com