【題目】如圖,在△ABC中,AB=AC,D為BC邊的中點(diǎn),過點(diǎn)D作DE⊥AB,DF⊥AC,垂足分別為E、F.

(1)求證;DE=DF;

(2)若∠A=90°,圖中與DE相等的還有哪些線段?(不用說明理由)

【答案】(1)證明見解析;(2)AE,AF,BE,CF.

【解析】

1)連接AD,根據(jù)等腰三角形三線合一的性質(zhì)可得∠EAD=FAD,根據(jù)AAS可證明AED≌△AFD,即可證明DE=DF;(2)如圖,連接AD,由∠A=90°可知ABC是等腰直角三角形,進(jìn)而可得AD=BD=DCADBC,根據(jù)DEAB可得DE=BE=AE,同理可得DF=AF=CF,綜上即可得答案.

(1)連接AD.

AB=ACDBC的中點(diǎn),

∴∠EAD=FAD

DEAB,DFAC

∴∠AED=∠AFD=90°,

又∵AD=AD

AED≌△AFD,

DE=DF.

(2)如圖:連接AD,

∵∠A=90°,AB=AC,DBC邊的中點(diǎn),

AD=BD,ADBC,

DEAB

DE=BE=AE,

同理可得:DF=AF=CF

∴若∠BAC=90°,圖中與DE相等的有線段AEAF,BE,CF.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A,B,C,D在同一條直線上,點(diǎn)E,F(xiàn)分別在直線AD的兩側(cè),且AE=DF,∠A=∠D,AB=DC.
(1)求證:四邊形BFCE是平行四邊形;
(2)若AD=10,DC=3,∠EBD=60°,則BE=時,四邊形BFCE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AC>AB,AD平分∠BAC,點(diǎn)D到點(diǎn)B與點(diǎn)C的距離相等,過點(diǎn)DDEBC于點(diǎn)E.

(1)求證:BE=CE;

(2)請直接寫出∠ABC,ACB,ADE三者之間的數(shù)量關(guān)系;

(3)若∠ACB=40°,ADE=20°,求∠DCB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊△ABC中,DAC邊上一點(diǎn),連接BD,將△BCD繞點(diǎn)B逆時針旋轉(zhuǎn)60°得到△BAE,連接ED,若BC=5BD=4,有下列結(jié)論:①AE∥BC;②∠ADE=∠BDC③△BDE是等邊三角形;④△ADE的周長是9.其中正確的個數(shù)是(

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,8×5的正方形網(wǎng)格中,每個小正方形的邊長均為1,ABC的三個頂點(diǎn)均在小正方形的頂點(diǎn)上.

(1)在圖1中畫ABD(點(diǎn)D在小正方形的頂點(diǎn)上),使ABD的周長等于ABC的周長,且以A,B,C,D為頂點(diǎn)的四邊形是軸對稱圖形;

(2)在圖2中畫ABE(點(diǎn)E在小正方形的頂點(diǎn)上),使ABE的周長等于ABC的周長,且以A,B,C,E為頂點(diǎn)的四邊形是中心對稱圖形,并直接寫出該四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究題.

已知:如圖

求證:

老師要求學(xué)生在完成這道教材上的題目證明后,嘗試對圖形進(jìn)行變式,繼續(xù)做拓展探究,看看有什么新發(fā)現(xiàn)?

1)小穎首先完成了對這道題的證明,在證明過程中她用到了平行線的一條性質(zhì),小穎用到的平行線性質(zhì)可能是_________

2)接下來,小穎用《幾何畫板》對圖形進(jìn)行了變式,她先畫了兩條平行線然后在平行線間畫了一點(diǎn),連接后,用鼠標(biāo)拖動點(diǎn)分別得到了圖①②③,小穎發(fā)現(xiàn)圖②正是上面題目的原型,于是她由上題的結(jié)論猜想到圖①和③中的之間也可能存在著某種數(shù)量關(guān)系于是她利用《幾何畫板》的度量與計(jì)算功能,找到了這三個角之間的數(shù)量關(guān)系.

請你在小穎操作探究的基礎(chǔ)上,繼續(xù)完成下面的問題:

①猜想圖①中之間的數(shù)量關(guān)系并加以證明:

②補(bǔ)全圖③,直接寫出之間的數(shù)量關(guān)系:_______

3)學(xué)以致用:一個小區(qū)大門欄桿的平面示意圖如圖所示,垂直地面平行于地面

,若,則_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:|1﹣ |+3tan30°﹣( ﹣5)0﹣(﹣ 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC和△ADE都是等腰直角三角形,∠BAC=DAE=90°,連結(jié)CEAD于點(diǎn)F,連結(jié)BDCE于點(diǎn)G,連結(jié)BE.下列結(jié)論:①CE=BD;②△ADC是等腰直角三角形;③∠ADB=AEB;S四邊形BCDEBD·CE;BC2+DE2=BE2+CD2.其中正確的結(jié)論有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)的一邊上,按要求畫圖并填空:

1)過點(diǎn)畫直線,與的另一邊相交于點(diǎn)

2)過點(diǎn)的垂線,垂足為點(diǎn)

3)過點(diǎn)畫直線,交直線于點(diǎn);

4)直接寫出_____;

5)如果,,,那么點(diǎn)到直線的距離為_______

查看答案和解析>>

同步練習(xí)冊答案