【題目】如圖,在△ABC中,∠ACB=90°,AC=6,BC=8,動點E從點A出發(fā)沿著線段AB向終點B運動,速度為每秒3個單位長度,過點E作EF⊥AB交直線AC于點F,連結(jié)CE.設(shè)點E的運動時間為t秒.
(1)當(dāng)點F在線段AC上(不含端點)時,
①求證:△ABC∽△AFE;
②當(dāng)t為何值時,△CEF的面積為1.2;
(2)在運動過程中,是否存在某時刻t,使△CEF為等腰三角形?若存在,求出t的值;若不存在,請說明理由.
【答案】(1)①見解析;②秒或1秒;(2)存在,秒或秒
【解析】
(1)①根據(jù)相似三角形的判定解答即可;
②過點 C 作 CH⊥AB 于 H,利用相似三角形的性質(zhì)和三角形面積公式解答即可;
(2)根據(jù)等腰三角形的判定分兩種情況解答.
解:(1)當(dāng)點 F 在線段 AC 上時,
①證明如下:∵EF⊥AB,
∴∠AEF=90°
在△ABC 中,∠ACB=90°
∴∠ACB=∠AEF 又∵∠A=∠A
∴△ABC∽△AFE
②當(dāng) t 秒時,AE=3t, 由①得△ABC∽△AFE
∴,即,
∴FE=4t
在 Rt△ABC 中,AB=,
過點 C 作 CH⊥AB 于 H,如圖 1:
由面積法可得:
∴
∴
=
.
令,
解得:,
經(jīng)檢驗,符合題意.
答:當(dāng) t 為秒或 1 秒時,△CEF 的面積為 1.2.
(2)存在,理由如下:
i)當(dāng)點 F 在線段 AC 上時(0<t<),
∵∠CFE=∠AEF+∠A>90°,
∴當(dāng)△CEF 為等腰三角形時,只能是 FC=FE,
由②可知:FE=4t,
∴AF=5t,FC=4t,
∴5t+4t=6,
∴t=.
ii)當(dāng)點 F 在線段 AC 的延長線上時(<t),如圖 2,
∵∠FCE=∠FCB+∠ECB>90°,
∴當(dāng)△CEF 為等腰三角形時,只能是 FC=EC,
此時∠F=∠CEF,
∵EF⊥AB,
∴∠AEF=90°,即∠CEA+∠CEF=90°, 又∠F+∠A=90°
∴∠CEA=∠A,
∴CE=AC=6,
∴FC=6,
∴AF=12, 即 5t=12
∴
綜上所述,t 的值為秒或秒時,△CEF 為等腰三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AC,BD相交于點O,點E是OA的中點,連接BE并延長交AD于點F,已知S△AEF=4,則下列結(jié)論:①;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正確的是( 。
A. ①②③④ B. ①④ C. ②③④ D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校八、九兩個年級各有學(xué)生180人,為了解這兩個年級學(xué)生的體質(zhì)健康情況,進行了抽樣調(diào)查,具體過程如下:
收集數(shù)據(jù)
從八、九兩個年級各隨機抽取20名學(xué)生進行體質(zhì)健康測試,測試成績(百分制)如下:
八年級 | 78 | 86 | 74 | 81 | 75 | 76 | 87 | 70 | 75 | 90 |
75 | 79 | 81 | 70 | 74 | 80 | 86 | 69 | 83 | 77 | |
九年級 | 93 | 73 | 88 | 81 | 72 | 81 | 94 | 83 | 77 | 83 |
80 | 81 | 70 | 81 | 73 | 78 | 82 | 80 | 70 | 40 |
整理、描述數(shù)據(jù)
將成績按如下分段整理、描述這兩組樣本數(shù)據(jù):
成績(x) | 40≤x≤49 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
八年級人數(shù) | 0 | 0 | 1 | 11 | 7 | 1 |
九年級人數(shù) | 1 | 0 | 0 | 7 | 10 | 2 |
(說明:成績80分及以上為體質(zhì)健康優(yōu)秀,70~79分為體質(zhì)健康良好,60~69分為體質(zhì)健康合格,60分以下為體質(zhì)健康不合格)
分析數(shù)據(jù)
兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差如表所示:
年級 | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
八年級 | 78.3 | 77.5 | 75 | 33.6 |
九年級 | 78 | 80.5 | a | 52.1 |
(1)表格中a的值為______;
(2)請你估計該校九年級體質(zhì)健康優(yōu)秀的學(xué)生人數(shù)為多少?
(3)根據(jù)以上信息,你認(rèn)為哪個年級學(xué)生的體質(zhì)健康情況更好一些?請說明理由.(請從兩個不同的角度說明推斷的合理性)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,AC=20cm,BC=15cm.現(xiàn)有動點P從點A出發(fā),沿AC向點C方向運動,動點Q從點C出發(fā),沿線段CB也向點B方向運動.如果點P的速度是4cm/秒,點Q的速度是2cm/秒,它們同時出發(fā),當(dāng)有一點到達所在線段的端點時,就停止運動,設(shè)運動的時間為t秒.
(1)用含t的代數(shù)式表示Rt△CPQ的面積S;
(2)當(dāng)t=3秒時,P、Q兩點之間的距離是多少?
(3)當(dāng)t為多少秒時,以點C、P、Q為頂點的三角形與△ABC相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,以點為圓心,以為半徑作優(yōu)弧,交于點,交于點.點在優(yōu)弧上從點開始移動,到達點時停止,連接.
(1)當(dāng)時,判斷與優(yōu)弧的位置關(guān)系,并加以證明;
(2)當(dāng)時,求點在優(yōu)弧上移動的路線長及線段的長.
(3)連接,設(shè)的面積為,直接寫出的取值范圍.
備用圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=﹣x2+bx+c與x軸交于點A,B,與y軸交于點C,直線y=x+4經(jīng)過A,C兩點.
(1)求拋物線的解析式;
(2)在AC上方的拋物線上有一動點P.
①如圖1,當(dāng)點P運動到某位置時,以AP,AO為鄰邊的平行四邊形第四個頂點恰好也在拋物線上,求出此時點P的坐標(biāo);
②如圖2,過點O,P的直線y=kx交AC于點E,若PE:OE=3:8,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸交于點,拋物線與軸的一個交點為(點在點的左側(cè)),過點作垂直軸交直線于點.
(1)求拋物線的函數(shù)表達式;
(2)將繞點順時針旋轉(zhuǎn),點的對應(yīng)點分別為點
①求點的坐標(biāo);
②將拋物線向右平移使它經(jīng)過點,此時得到的拋物線記為,求出拋物線的函數(shù)表達式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com