【題目】如圖,已知AC⊥BC,BD⊥AD,AC與BD交于O,AC=BD.

求證:
(1)BC=AD;
(2)△OAB是等腰三角形.

【答案】
(1)證明:∵AC⊥BC,BD⊥AD,

∴∠ADB=∠ACB=90°,

在Rt△ABC和Rt△BAD中,

,

∴Rt△ABC≌Rt△BAD(HL),

∴BC=AD


(2)證明:∵Rt△ABC≌Rt△BAD,

∴∠CAB=∠DBA,

∴OA=OB,

∴△OAB是等腰三角形


【解析】(1)根據(jù)AC⊥BC,BD⊥AD,得出△ABC與△BAD是直角三角形,再根據(jù)AC=BD,AB=BA,得出Rt△ABC≌Rt△BAD,即可證出BC=AD,(2)根據(jù)Rt△ABC≌Rt△BAD,得出∠CAB=∠DBA,從而證出OA=OB,△OAB是等腰三角形.
【考點(diǎn)精析】本題主要考查了等腰三角形的判定的相關(guān)知識(shí)點(diǎn),需要掌握如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(簡(jiǎn)稱:等角對(duì)等邊).這個(gè)判定定理常用于證明同一個(gè)三角形中的邊相等才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:-3a(4b-1)=_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知AB∥CD,以點(diǎn)B為圓心,小于DB長(zhǎng)為半徑作圓弧,分別交BA、BD于點(diǎn)E、F,再分別以點(diǎn)E、F為圓心,大于 EF長(zhǎng)為半徑作圓弧,兩弧交于點(diǎn)G,作射線BG交CD于點(diǎn)H.若∠D=116°,則∠DHB的大小為度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AC⊥BC,BD⊥AD,AC與BD交于O,AC=BD.

求證:
(1)BC=AD;
(2)△OAB是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】教材中,在計(jì)算如圖1所示的正方形ABCD的面積時(shí),分別從兩個(gè)不同的角度進(jìn)行了操作:
(1)把它看成是一個(gè)大正方形,則它的面積為 ;
(2)把它看成是2個(gè)小長(zhǎng)方形和2個(gè)小正方形組成的,則它的面積為 ;因此,可得到等式: .
① 類比教材中的方法,由圖2中的大正方形可得等式:
.
② 試在圖2右邊空白處畫(huà)出面積為 的長(zhǎng)方形的示意圖(標(biāo)注好a、b),由圖形可知,多項(xiàng)式 可分解因式為:


在上方空白處畫(huà)出②中的示意圖
③ 若將代數(shù)式 展開(kāi)后合并同類項(xiàng),得到多項(xiàng)式N,則多項(xiàng)式N的項(xiàng)數(shù)一共有項(xiàng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠1=100°,∠2=145°,那么∠3=(

A.55°
B.65°
C.75°
D.85°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,E,F(xiàn)分別是矩形ABCD的邊AD,AB上的點(diǎn),若EF=EC,且EF⊥EC.

(1)求證:△AEF≌△DCE;

(2)若CD=1,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代數(shù)學(xué)的許多發(fā)現(xiàn)都曾位居世界前列,其中“楊輝三角”(如圖所示)就是一例.
這個(gè)三角形的構(gòu)造法則為:兩腰上的數(shù)都是1,其余每個(gè)數(shù)均為其上方左右兩數(shù)之和.事實(shí)上,這個(gè)三角形給出了(a+b)n(n為正整數(shù))的展開(kāi)式(按a的次數(shù)由大到小的順序排列)的系數(shù)規(guī)律.例如,在三角形中第三行的三個(gè)數(shù)1,2,1,恰好對(duì)應(yīng)(a+b)2=a2+ab+b2展開(kāi)式中各項(xiàng)的系數(shù);第四行的四個(gè)數(shù)1,3,3,1,恰好對(duì)應(yīng)著(a+b)3=a3+3a2b+3ab2+b3展開(kāi)式中各項(xiàng)的系數(shù)等等.根據(jù)上面的規(guī)律,(a+b)4的展開(kāi)式中各項(xiàng)系數(shù)最大的數(shù)為(
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】當(dāng)a < 0 時(shí),方程ax2+bx+c=0無(wú)實(shí)數(shù)根,則二次函數(shù)y=ax2+bx+c的圖像一定在

A、x軸上方 B、x軸下方 C、y軸右側(cè) D、y軸左側(cè)

查看答案和解析>>

同步練習(xí)冊(cè)答案