【題目】如圖,矩形OABC的頂點(diǎn)與坐標(biāo)原點(diǎn)O重合,將△OAB沿對(duì)角線OB所在的直線翻折,點(diǎn)A落在點(diǎn)D處,OD與BC相交于點(diǎn)E,已知OA=8,AB=4
(1)求證:△OBE是等腰三角形;
(2)求E點(diǎn)的坐標(biāo);
(3)坐標(biāo)平面內(nèi)是否存在一點(diǎn)P,使得以B,D,E,P為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1)見解析; (2)(3,4); (3)(,)或(,)或(,).
【解析】
(1)由矩形的性質(zhì)得出OA∥BC,∠AOB=∠OBC,
由折疊的性質(zhì)得∠AOB=∠DOB,得出∠OBC=∠DOB,證出OE=BE即可;
(2)設(shè)OE=BE=x,則CE=8-x,在Rt△OCE中,由勾股定理得出方程,解方程即可;
(3)先求出點(diǎn)D的坐標(biāo),然后根據(jù)B、D、E三點(diǎn)的坐標(biāo)利用中點(diǎn)坐標(biāo)公式分三種情況,即可求出P點(diǎn)的坐標(biāo).[點(diǎn)(a,b)與(c,d)所連線段的中點(diǎn)坐標(biāo)是(,)]
解:
(1)證明:∵四邊形OABC是矩形,
∴OA∥BC,
∴∠AOB=∠OBC,
由折疊的性質(zhì)得:∠AOB=∠DOB,
∴∠OBC=∠DOB,
∴OE=BE,
∴△OBE是等腰三角形;
(2)設(shè)OE=BE=x,則CE=BC-BE=OA-BE=8-x,
在Rt△OCE中,由勾股定理得:42+(8-x)2=x2,
解得:x=5,
∴CE=8-x=3,
∵OC=4,
∴E點(diǎn)的坐標(biāo)為(3,4);
(3)坐標(biāo)平面內(nèi)存在一點(diǎn)P,使得以B,D,E,P為頂點(diǎn)的四邊形是平行四邊形。理由如下:
作DH⊥BE于H
在Rt△BDE中,BE=5,BD=4,DE=3
∴
∴DH=
∴EH=
∴CH=
∴點(diǎn)D的坐標(biāo)是(,)
∴當(dāng)BE為平行四邊形的對(duì)角線時(shí),點(diǎn)P的坐標(biāo)為(3+8-,4+4-),即(,);
當(dāng)BD為平行四邊形的對(duì)角線時(shí),點(diǎn)P的坐標(biāo)為(8+-3,4+-4),即(,);
當(dāng)DE為平行四邊形的對(duì)角線時(shí),點(diǎn)P的坐標(biāo)為(3+-8,4+-4),即(,);
綜上所述,坐標(biāo)平面內(nèi)存在一點(diǎn)P,使得以B,D,E,P為頂點(diǎn)的四邊形是平行四邊形,P點(diǎn)坐標(biāo)為(,)或(,)或(,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖的2017年11月份的月歷表中,任意框出表中豎列上三個(gè)相鄰的數(shù),這三個(gè)數(shù)的和不可能是( 。
A.27B.51
C.69D.72
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點(diǎn)D,過點(diǎn)D作⊙O的切線,交BC于E.則結(jié)論:①BE=EC;②∠EDC=∠ECD;③∠B=∠BDE;④△ABC∽△ACD;⑤△DEC是等邊三角形.其中正確的結(jié)論有( 。
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC邊長(zhǎng)為4,點(diǎn)P,Q分別是AB,BC邊上的動(dòng)點(diǎn),且AP =BQ= x,作□PQCR,則用含x的代數(shù)式表示□PQCR的面積為______;當(dāng)PC∥AR時(shí), x =____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】華為手機(jī)新款上市,十分暢銷.某經(jīng)銷商進(jìn)價(jià)每臺(tái)3000元,售價(jià)每臺(tái)4000 元.一月份銷量為512臺(tái),二、三月份銷量持續(xù)走高,三月份銷量達(dá)到800臺(tái).
(1)求二、三月份每月銷量的平均增長(zhǎng)率;
(2)根據(jù)市場(chǎng)調(diào)查經(jīng)驗(yàn),四月份此款手機(jī)銷售情況將不再火爆而是趨于平穩(wěn).若售價(jià)不變,四月份銷量將與三月份持平;若降價(jià)促銷,每臺(tái)每降價(jià)50元,月銷量將增加100臺(tái).要使四月份利潤(rùn)達(dá)到90萬(wàn)元,每臺(tái)應(yīng)降價(jià)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2臺(tái)大收割機(jī)和5臺(tái)小收割機(jī)同時(shí)工作2 h共收割小麥3.6hm2,3臺(tái)大收割機(jī)和2臺(tái)小收割機(jī)同時(shí)工作5 h共收割小麥8 hm2.1臺(tái)大收割機(jī)和1臺(tái)小收割機(jī)每小時(shí)各收割小麥多少公頃?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=6,∠DAB=60°,AE分別交BC、BD于點(diǎn)E、F,CE=2,連接CF,以下結(jié)論:①;②點(diǎn)E到AB的距離是;③;④△ABF的面積為.其中一定成立的有幾個(gè)( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,過點(diǎn)B作BE⊥CD,垂足為E,連結(jié)AE,F為AE上一點(diǎn),且∠BFE=∠C.
(1)求證: ;
(2)若AB=4,∠BAE=30°,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在平行四邊形ABCD中,CD=2AD,BE⊥AD,點(diǎn)F為DC中點(diǎn),連接EF、BF,下列結(jié)論:①∠ABC=2∠ABF;②EF=BF;③S四邊形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正確的有_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com