如圖所示,拋物線與x軸交于點A(-1,0)、B(3,0)兩點,與y軸交于點C(0,-3).以AB為直徑作⊙M,過拋物線上一點P作⊙M的切線PD,切點為D,并與⊙M的切線AE相交于點E,連接DM并延長交⊙M于點N,連接AN、AD.
(1)求拋物線所對應的函數(shù)關系式及拋物線的頂點坐標;
(2)若四邊形EAMD的面積為4
3
,求直線PD的函數(shù)關系式;
(3)拋物線上是否存在點P,使得四邊形EAMD的面積等于△DAN的面積?若存在,求出點P的坐標;若不存在,說明理由.
(1)因為拋物線與x軸交于點A(-1,0)、B(3,0)兩點,
設拋物線的函數(shù)關系式為:y=a(x+1)(x-3),
∵拋物線與y軸交于點C(0,-3),
∴-3=a(0+1)(0-3),
∴a=1,
所以,拋物線的函數(shù)關系式為:y=x2-2x-3,(2分)
又∵y=(x-1)2-4,
因此,拋物線的頂點坐標為(1,-4);(3分)

(2)連接EM,∵EA、ED是⊙M的兩條切線,
∴EA=ED,EA⊥AM,ED⊥MD,
∴△EAM≌△EDM(HL),
又∵四邊形EAMD的面積為4
3

∴S△EAM=2
3
,
1
2
AM•AE=2
3
,
又∵AM=2,
∴AE=2
3

因此,點E的坐標為E1(-1,2
3
)或E2(-1,-2
3
),(5分)
當E點在第二象限時,切點D在第一象限,
在直角三角形EAM中,tan∠EMA=
EA
AM
=
2
3
2
=
3
,
∴∠EMA=60°,
∴∠DMB=60°,
過切點D作DF⊥AB,垂足為點F,
∴MF=1,DF=
3
,
因此,切點D的坐標為(2,
3
),(6分)
設直線PD的函數(shù)關系式為y=kx+b,
將E(-1,2
3
),D(2,
3
)的坐標代入得
3
=2k+b
2
3
=-k+b
,
解之,得:
k=-
3
3
b=
5
3
3
,
所以,直線PD的函數(shù)關系式為y=-
3
3
x+
5
3
3
,(7分)
當E點在第三象限時,切點D在第四象限,
同理可求:切點D坐標為(2,-
3
),
直線PD的函數(shù)關系式為y=
3
3
x-
5
3
3
,
因此,直線PD的函數(shù)關系式為y=-
3
3
x+
5
3
3
y=
3
3
x-
5
3
3
;(8分)

(3)若四邊形EAMD的面積等于△DAN的面積,
又∵S四邊形EAMD=2S△EAM,S△DAN=2S△AMD
∴S△AMD=S△EAM,
∴E、D兩點到x軸的距離相等,
∵PD與⊙M相切,
∴點D與點E在x軸同側,
∴切線PD與x軸平行,
此時切線PD的函數(shù)關系式為y=2或y=-2,(9分)
當y=2時,由y=x2-2x-3得,x=1±
6
;
當y=-2時,由y=x2-2x-3得,x=1±
2
,(11分)
故滿足條件的點P的位置有4個,分別是P1(1+
6
,2)、P2(1-
6
,2)、P3(1+
2
,-2)、P4(1-
2
,-2).(12分)
說明:本參考答案給出了一種解題方法,其它正確方法應參考本標準給出相應分數(shù).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,已知點A(8,0),sin∠ABO=
4
5
,拋物線經過點O、A,且頂點在△AOB的外接圓上,則此拋物線的解析式為( 。
A.y=-
1
2
x2+4x
B.y=-
1
8
x2+x
C.y=
1
2
x2-4x
或y=-
1
8
x2+x
D.y=-
1
2
x2+4x
或y=
1
8
x2-x

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知如圖,拋物線y=ax2+bx+c與x軸相交于B(1,0)、C(4,0)兩點,與y軸的正半軸相交于A點,過A、B、C三點的⊙P與y軸相切于點A.
(1)請求出點A坐標和⊙P的半徑;
(2)請確定拋物線的解析式;
(3)M為y軸負半軸上的一個動點,直線MB交⊙P于點D.若△AOB與以A、B、D為頂點的三角形相似,求MB•MD的值.(先畫出符合題意的示意圖再求解).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

有一座拋物線型拱橋(如圖),正常水位時橋下河面寬20m,河面距拱頂4m.
(1)在如圖所示的平面直角坐標系中,求出拋物線解析式;
(2)為了保證過往船只順利航行,橋下水面的寬度不得小于18m.求水面在正常水位基礎上漲多少m時,就會影響過往船只?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖(1),拋物線y=ax2-3ax+b經過A(-1,0),C(3,-4)兩點,與y軸交于點D,與x軸交于另一點B.
(1)求此拋物線的解析式;
(2)若直線L:y=kx+1(k≠0)將四邊形ABCD的面積分成相等的兩部分,求直線L的解析式;
(3)如圖(2),過點E(1,1)作EF⊥x軸于點F,將△AEF繞平面內某點旋轉180°后得△MNT(點M、N、T分別與點A,E,F(xiàn)對應),使點M,N在拋物線上,求點M,N的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖是一座拋物線型拱橋,以橋基AB為x軸,AB的中垂線為y軸建立直角坐標系.已知橋基AB的跨度為60米,如果水位從AB處上升5米,就達到警戒線CD處,此時水面CD的寬為30
2
米,求拋物線的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)y=mx2+(m-3)x-3(m>0)的圖象如圖所示.
(1)這條拋物線與x軸交于兩點A(x1,0)、B(x2,0)(x1<x2),與y軸交于點C,且AB=4,⊙M過A、B、C三點,求扇形MAC的面積;
(2)在(1)的條件下,拋物線上是否存在點P,使△PBD(PD垂直于x軸,垂足為D)被直線BC分成面積比為1:2的兩部分?若存在,請求出P點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在端午節(jié)前夕,三位同學到某超市調研一種進價為2元的粽子的銷售情況.請根據小麗提供的信息:

(1)請解答小華提出的問題;
(2)能否獲得比800元更多的利潤?若能,請舉例說明;若不能,試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,用長20m的籬笆,一面靠墻圍成一個長方形的園子,怎么圍才能使園子的面積最大?最大面積是多少?

查看答案和解析>>

同步練習冊答案