在端午節(jié)前夕,三位同學到某超市調研一種進價為2元的粽子的銷售情況.請根據(jù)小麗提供的信息:

(1)請解答小華提出的問題;
(2)能否獲得比800元更多的利潤?若能,請舉例說明;若不能,試說明理由.
(1)設實現(xiàn)每天800元利潤的定價為x元/個,根據(jù)題意,得
(x-2)(500-
x-3
0.1
×10)=800,
整理得:x2-10x+24=0.
解之得:x1=4,x2=6.
∵物價局規(guī)定,售價不能超過進價的240%,即2×240%=4.8(元).
∴x2=6不合題意,舍去,得x=4.
答:應定價4元/個,才可獲得800元的利潤.

(2)由(1)得y=-100(x-5)2+900,
∵-100<0,
∴函數(shù)圖象開口向下,且對稱軸為x=5,
∵x≤4.8,
故當x=4.8時函數(shù)能取最大值,
即ymax=-100(4.8-5)2+900=896.
故800元的銷售利潤不是最多,當定價為4.8元時,每天的銷售利潤最大.
(此處結果不唯一).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=ax2+bx+c(a≠0)經(jīng)過A(-2,-3)、B(3,2)兩點,且與x軸相交于M、N兩點,當以線段MN為直徑的圓的面積最小時,求M、N兩點的坐標和四邊形AMBN的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=-x2+bx+c的圖象經(jīng)過(1,0)和(0,3)兩點,它的部分圖象如下圖.
(1)求b、c的值;
(2)寫出當y>0時,x的取值范圍;
(3)求y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系中,二次函數(shù)y=ax2+bx+2的圖象與x軸交于A(-3,0),B(1,0)兩點,與y軸交于點C.
(1)求這個二次函數(shù)的關系解析式;
(2)點P是直線AC上方的拋物線上一動點,是否存在點P,使△ACP的面積最大?若存在,求出點P的坐標;若不存在,說明理由;
(3)在平面直角坐標系中,是否存在點Q,使△BCQ是以BC為腰的等腰直角三角形?若存在,直接寫出點Q的坐標;若不存在,說明理由;

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,對稱軸為直線x=
7
2
的拋物線經(jīng)過點A(6,0)和B(0,4).
(1)求拋物線解析式及頂點坐標;
(2)設點E(x,y)是拋物線上一動點,且位于第四象限,四邊形OEAF是以OA為對角線的平行四邊形,求平行四邊形OEAF的面積S與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
①當平行四邊形OEAF的面積為24時,請判斷平行四邊形OEAF是否為菱形?
②是否存在點E,使平行四邊形OEAF為正方形?若存在,求出點E的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,將腰長為
5
的等腰Rt△ABC(∠C是直角)放在平面直角坐標系中的第二象限,其中點A在y軸上,點B在拋物線y=ax2+ax-2上,點C的坐標為(-1,0).
(1)點A的坐標為______,點B的坐標為______;
(2)拋物線的關系式為______,其頂點坐標為______;
(3)將三角板ABC繞頂點A逆時針方向旋轉90°,到達△AB′C′的位置.請判斷點B′、C′是否在(2)中的拋物線上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

某商品的進價為每件30元,現(xiàn)在的售價為每件40元,每星期可賣出150件.市場調查反映:如果每件售價每漲1元(售價每件不能高于45元),那么每星期少賣10件.設每件售價為x元(x為非負整數(shù)),則若要使每星期的利潤最大且每星期的銷量較大,x應為多少元?(  )
A.41B.42C.42.5D.43

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

兒童商場購進一批M型服裝,銷售時標價為75元/件,按8折銷售仍可獲利50%.商場現(xiàn)決定對M型服裝開展促銷活動,每件在8折的基礎上再降價x元銷售,已知每天銷售數(shù)量y(件)與降價x(元)之間的函數(shù)關系式為y=20+4x(x>0).
(1)求M型服裝的進價;
(2)求促銷期間每天銷售M型服裝所獲得的利潤W的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,拋物線與x軸交于點A(-1,0)、B(3,0)兩點,與y軸交于點C(0,-3).以AB為直徑作⊙M,過拋物線上一點P作⊙M的切線PD,切點為D,并與⊙M的切線AE相交于點E,連接DM并延長交⊙M于點N,連接AN、AD.
(1)求拋物線所對應的函數(shù)關系式及拋物線的頂點坐標;
(2)若四邊形EAMD的面積為4
3
,求直線PD的函數(shù)關系式;
(3)拋物線上是否存在點P,使得四邊形EAMD的面積等于△DAN的面積?若存在,求出點P的坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案