如圖是一座拋物線型拱橋,以橋基AB為x軸,AB的中垂線為y軸建立直角坐標系.已知橋基AB的跨度為60米,如果水位從AB處上升5米,就達到警戒線CD處,此時水面CD的寬為30
2
米,求拋物線的函數(shù)解析式.
設拋物線的函數(shù)解析式為y=ax2+k(a≠0)
∵橋基AB的跨度為60,
∴點B的坐標為(30,0)
∵水位從AB處上升5米,就達到警戒線CD處,此時水面CD的寬為30
2
米,
∴點D的坐標為(15
2
,5)
0=a×302+k
5=a×(15
2
)
2
+k

a=-
1
90
k=10

∴拋物線的函數(shù)解析式為:y=-
1
90
x2+10.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,將腰長為
5
的等腰Rt△ABC(∠C是直角)放在平面直角坐標系中的第二象限,其中點A在y軸上,點B在拋物線y=ax2+ax-2上,點C的坐標為(-1,0).
(1)點A的坐標為______,點B的坐標為______;
(2)拋物線的關系式為______,其頂點坐標為______;
(3)將三角板ABC繞頂點A逆時針方向旋轉(zhuǎn)90°,到達△AB′C′的位置.請判斷點B′、C′是否在(2)中的拋物線上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在直角坐標系中,Rt△AOB的頂點坐標分別為A(0,2),O(0,0),B(4,0),△AOB繞O點按逆時針方向旋轉(zhuǎn)90°得到△COD.
(1)求C、D兩點的坐標;
(2)求經(jīng)過C、D、B三點的拋物線的解析式;
(3)設(2)中的拋物線的頂點為P,AB的中點為M,試判斷△PMB是鈍角三角形、直角三角形還是銳角三角形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,將直線y=kx沿y軸向下平移3個單位長度后恰好經(jīng)過B(-3,0)及y軸上的C點.若拋物線y=-x2+bx+c與x軸交于A、B兩點(點A在點B的右側(cè)),且經(jīng)過點C,其對稱軸與直線BC交于點E,與x軸交于點F.
(1)求直線BC及拋物線的解析式;
(2)設拋物線的頂點為D,點P在拋物線的對稱軸上,若∠APD=∠ACB,求點P的坐標;
(3)在拋物線上是否存在點M,使得直線CM把四邊形EFOC分成面積相等的兩部分?若存在,請求出直線CM的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知如圖,二次函數(shù)y=ax2+bx+c的圖象過A、B、C三點
(1)觀察圖象寫出A、B、C三點的坐標;
(2)求出二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,拋物線與x軸交于點A(-1,0)、B(3,0)兩點,與y軸交于點C(0,-3).以AB為直徑作⊙M,過拋物線上一點P作⊙M的切線PD,切點為D,并與⊙M的切線AE相交于點E,連接DM并延長交⊙M于點N,連接AN、AD.
(1)求拋物線所對應的函數(shù)關系式及拋物線的頂點坐標;
(2)若四邊形EAMD的面積為4
3
,求直線PD的函數(shù)關系式;
(3)拋物線上是否存在點P,使得四邊形EAMD的面積等于△DAN的面積?若存在,求出點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

用長度為20m的金屬材料制成如圖所示的金屬框,下部為矩形,上部為等腰直角三角形,其斜邊長為2xm.當該金屬框圍成的圖形面積最大時,圖形中矩形的相鄰兩邊長各為多少?請求出金屬框圍成的圖形的最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,AB=17,AC=5
2
,∠CAB=45°,點O在BA上移動,以O為圓心作⊙O,使⊙O與邊BC相切,切點為D,設⊙O的半徑為x,四邊形AODC的面積為y.
(1)求y與x的函數(shù)關系式;
(2)求x的取值范圍;
(3)當x為何值時,⊙O與BC、AC都相切?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,AB=AC=1,∠A=45°,邊長為1的正方形的一個頂點D在邊AC上,與△ABC另兩邊分別交于點E、F,DEAB,將正方形平移,使點D保持在AC上(D不與A重合),設AF=x,正方形與△ABC重疊部分的面積為y.
(1)求y與x的函數(shù)關系式并寫出自變量x的取值范圍;
(2)x為何值時y的值最大?
(3)x在哪個范圍取值時y的值隨x的增大而減?

查看答案和解析>>

同步練習冊答案