【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點C的坐標為(4,﹣1).

1)把△ABC向上平移5個單位后得到對應(yīng)的△A1B1C1,畫出△A1B1C1,并寫出C1的坐標;

2)以原點O為對稱中心,再畫出與△A1B1C1關(guān)于原點O對稱的△A2B2C2,并寫出點C2的坐標.

【答案】1C14,4);(2C2﹣4,﹣4).

【解析】1)利用關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分,分別找出AB、C的對應(yīng)點,順次連接,即得到相應(yīng)的圖形;(2)利用對應(yīng)點到旋轉(zhuǎn)中心的距離相等,以及對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角,即可作出圖形.

解答:解:(1)如圖所示:C1的坐標為:(-1,4);

2)如圖所示:C2的坐標為:(-1-4).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,△A1A2A3,△A3A4A5,△A5A6A7,△A7A8A9,…,都是等腰直角三角形,且點A1,A3,A5,A7,A9的坐標分別為A1 3,0),A3 1,0),A5 40),A7 0.0),A9 5.0),依據(jù)圖形所反映的規(guī)律,則A102的坐標為( 。

A. 225B. 2,26C. ,﹣D. ,﹣

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)y=x+1x、y 軸分別交于點A、B,在直線 AB上截取BB1=AB,過點B1分別作y 軸的垂線,垂足為點C1,得到⊿BB1C1;在直線 AB上截取B1B2= BB1,過點B2分別作y 軸的垂線,垂足為點C2,得到⊿BB2C2;在直線AB上截取B2B3= B1B2,過點B3y 軸的垂線,垂足為點C3,得到⊿BB3C3……;第3個⊿BB3C3的面積是___________;第n個⊿BBnCn的面積是______________(用含n的式子表示,n是正整數(shù)).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某班決定購買一些筆記本和文具盒做獎品.已知需要的筆記本數(shù)量是文具盒數(shù)量的3倍,購買的總費用不低于220元,但不高于250.

1)商店內(nèi)筆記本的售價4/本,文具盒的售價為10/個,設(shè)購買筆記本的數(shù)量為x,按照班級所定的費用,有幾種購買方案?每種方案中筆記本和文具盒數(shù)量各為多少?

2)在(1)的方案中,哪一種方案的總費用最少?最少費用是多少元?

3)經(jīng)過還價,老板同意4/本的筆記本可打八折,10/個的文具盒可打七折,用(2)中的最少費用最多還可以多買多少筆記本和文具盒?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】怡然美食店的AB兩種菜品,每份成本均為14元,售價分別為20元、18元,這兩種菜品每天的營業(yè)額共為1120元,總利潤為280元.

1)該店每天賣出這兩種菜品共多少份?

2)該店為了增加利潤,準備降低A種菜品的售價,同時提高B種菜品的售價,售賣時發(fā)現(xiàn),A種菜品售價每降0.5元可多賣1份;B種菜品售價每提高0.5元就少賣1份,如果這兩種菜品每天銷售總份數(shù)不變,那么這兩種菜品一天的總利潤最多是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)學課上,老師提出如下問題:

尺規(guī)作圖:過直線外一點作已知直線的平行線.

已知:直線l及其外一點A

求作:l的平行線,使它經(jīng)過點A

小云的作法如下:

(1)在直線l上任取一點B;

(2)B為圓心,BA長為半徑作弧,交直線l于點C;

(3)分別以A、C為圓心,BA長為半徑作弧,兩弧相交于點D

(4)作直線AD.直線AD即為所求.

小云作圖的依據(jù)是_______________________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC三個頂點的坐標分別是A(1,1),B(4,2),C(3,4).

(1)請畫出ABC向左平移5個單位長度后得到的A1B1C1;

AB、C向左平移5個單位后的坐標分別為(-4,1),(-1,2)(-2,4),連接這三個點,得A1B1C1;

(2)請畫出ABC關(guān)于原點對稱的A2B2C2

(3)x軸上求作一點P,使PAB周長最小,請畫出PAB,并直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某家電銷售商城電冰箱的銷售價為每臺2100元,空調(diào)的銷售價為每臺1750元,每臺電冰箱的進價比每臺空調(diào)的進價多400元,商城用80000元購進電冰箱的數(shù)量與用64000元購進空調(diào)的數(shù)量相等.

1)求每臺電冰箱與空調(diào)的進價分別是多少?

2)現(xiàn)在商城準備一次購進這兩種家電共100臺,設(shè)購進電冰箱臺,這100臺家電的銷售總利潤為元,要求購進空調(diào)數(shù)量不超過電冰箱數(shù)量的2倍,試確定獲利最大的方案以及最大利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】端午節(jié)是我國的傳統(tǒng)佳節(jié),歷來有吃粽子的習俗.我市某食品加工廠,擁有A、B兩條粽子加工生產(chǎn)線.原計劃A生產(chǎn)線每小時加工粽子個數(shù)是B生產(chǎn)線每小時加工粽子個數(shù)的

1)若A生產(chǎn)線加工4000個粽子所用時間與B生產(chǎn)線加工4000個粽子所用時間之和恰好為18小時,則原計劃A、B生產(chǎn)線每小時加工粽子各是多少個?

2)在(1)的條件下,原計劃AB生產(chǎn)線每天均加工a小時,由于受其他原因影響,在實際加工過程中,A生產(chǎn)線每小時比原計劃少加工100個,B生產(chǎn)線每小時比原計劃少加工50個.為了盡快將粽子投放到市場,A生產(chǎn)線每天比原計劃多加工3小時,B生產(chǎn)線每天比原計劃多加工a小時.這樣每天加工的粽子不少于6300個,求a的最小值.

查看答案和解析>>

同步練習冊答案