【題目】閱讀下面“將無限循環(huán)小數(shù)化為分?jǐn)?shù)”材料,并解決相應(yīng)問題:
我們知道分?jǐn)?shù)寫為小數(shù)形式即為,反之,無限循環(huán)小數(shù)寫成分?jǐn)?shù)形式即.一般地,任何一個(gè)無限循環(huán)小數(shù)都可以寫成分?jǐn)?shù)形式嗎?如果可以,應(yīng)怎樣寫呢?
(發(fā)現(xiàn))先以無限循環(huán)小數(shù)為例進(jìn)行討論.
設(shè)=x,由=0.777…可知,10x=7.777…,即10x﹣x=7.解方程,得x=.于是=,
(類比探究)再以無限循環(huán)小數(shù)為例,做進(jìn)一步的討論.
無限循環(huán)小數(shù)=0.737373…,它的循環(huán)節(jié)有兩位,類比上面的討論可以想到如下做法.
設(shè)=x,由=0.737373…可知,100x=73.7373…,所以100x﹣x=73.解方程,得x=,于是得=
(解決問題)
(1)請(qǐng)你把無限小數(shù)寫成分?jǐn)?shù)形式,即= ;
(2)請(qǐng)你把無限小數(shù)寫成分?jǐn)?shù)形式,即= ;
(3)根據(jù)以上過程比較與1的大小關(guān)系,并說明你的理由.
【答案】(1);(2);(3)=1.理由見解析.
【解析】
(1)根據(jù)題意設(shè) =x,由=0.444…可知,10x-x的值,進(jìn)而求出即可;
(2)根據(jù)題意設(shè)=x,由=0.7575…可知,100x-x的值,進(jìn)而求出即可;
(3)根據(jù)題意設(shè)=x,由=0.999…可知,10x-x的值,進(jìn)而求出即可.
(1)設(shè)=x,由=0.444…可知,10x﹣x=﹣=4,
即10x﹣x=4.
解得x=.
于是,得=;
(2)設(shè)=x,由=0.7575…可知,100x﹣x=75.
﹣=75,
即100x﹣x=75.
解得x=.
于是,得=;
(3)設(shè)=x,由=0.999…可知,10x﹣x=﹣=9,
即10x﹣x=9.
解得x=1.
于是,得=1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系xOy中(如圖),已知拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A(2,2),對(duì)稱軸是直線x=1,頂點(diǎn)為B.
(1)求這條拋物線的表達(dá)式和點(diǎn)B的坐標(biāo);
(2)點(diǎn)M在對(duì)稱軸上,且位于頂點(diǎn)上方,設(shè)它的縱坐標(biāo)為m,聯(lián)結(jié)AM,用含m的代數(shù)式表示∠AMB的余切值;
(3)將該拋物線向上或向下平移,使得新拋物線的頂點(diǎn)C在x軸上.原拋物線上一點(diǎn)P平移后的對(duì)應(yīng)點(diǎn)為點(diǎn)Q,如果OP=OQ,求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙、丁四位同學(xué)進(jìn)行一次乒乓球單打比賽,要從中選出兩位同學(xué)打笫一場(chǎng)比賽.
(1)請(qǐng)用樹狀圖法或列表法,求恰好選中甲、乙兩位同學(xué)的概率;
(2)若已確定甲打第一場(chǎng),再?gòu)钠溆嗳煌瑢W(xué)中隨機(jī)選取一位,求恰好選中乙同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)店打出促銷廣告:最潮新款服裝30件,每件售價(jià)300元.若一次性購(gòu)買不超過10件時(shí),售價(jià)不變;若一次性購(gòu)買超過10件時(shí),每多買1件,所買的每件服裝的售價(jià)均降低3元.已知該服裝成本是每件200元,設(shè)顧客一次性購(gòu)買服裝x件時(shí),該網(wǎng)店從中獲利y元.
(1)求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)顧客一次性購(gòu)買多少件時(shí),該網(wǎng)店從中獲利最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰梯形ABCD中,,,,.點(diǎn)Р從點(diǎn)B出發(fā)沿折線段以每秒5個(gè)單位長(zhǎng)的速度向點(diǎn)C勻速運(yùn)動(dòng);點(diǎn)Q從點(diǎn)C出發(fā)沿線段CB方向以每秒3個(gè)單位長(zhǎng)的速度勻速運(yùn)動(dòng),過點(diǎn)O向上作射線OKIBC,交折線段于點(diǎn)E.點(diǎn)P、O同時(shí)開始運(yùn)動(dòng),為點(diǎn)Р與點(diǎn)C重合時(shí)停止運(yùn)動(dòng),點(diǎn)Q也隨之停止.設(shè)點(diǎn)P、Q運(yùn)動(dòng)的時(shí)間是t秒.
(1)點(diǎn)P到達(dá)終點(diǎn)C時(shí),求t的值,并指出此時(shí)BQ的長(zhǎng);
(2)當(dāng)點(diǎn)Р運(yùn)動(dòng)到AD上時(shí),t為何值能使?
(3)t為何值時(shí),四點(diǎn)P、Q、C、E成為一個(gè)平行四邊形的頂點(diǎn)?
(4)能為直角三角形時(shí)t的取值范圍________.(直接寫出結(jié)果)
(注:備用圖不夠用可以另外畫)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某自行車廠計(jì)劃一周生產(chǎn)自行車1400輛,平均每天生產(chǎn)200輛,但由于種種原因,實(shí)際每天生產(chǎn)量與計(jì)劃量相比有出入.下表是某周的生產(chǎn)情況(超產(chǎn)記為正.減產(chǎn)記為負(fù)):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 七 |
增減 | +5 | -2 | -5 | +9 | -10 | +16 | -9 |
(1)根據(jù)記錄的數(shù)據(jù)可知該廠星期四生產(chǎn)自行車多少輛?
(2)產(chǎn)量最多的一天比產(chǎn)量最少的一天多生產(chǎn)自行車多少輛?
(2)根據(jù)記錄的數(shù)據(jù)可知該廠本周實(shí)際生產(chǎn)自行車多少輛?
(4)該廠實(shí)行每周計(jì)件工資制,每生產(chǎn)一輛車可得100元,若超額完成任務(wù),則超過部分每輛另獎(jiǎng)30元;少生產(chǎn)一輛扣40元,那么該廠工人這一周的工資總額是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明的爸爸是一名出租車司機(jī),一天下午小明的爸爸以某超市為出發(fā)點(diǎn),在東西方向的公路上運(yùn)營(yíng),記向東為正,向西為負(fù),以先后次序記錄如下:(單位km)
+5,﹣3,﹣5,+4,﹣8,+6,﹣4
(1)將最后一名乘客送到目的地時(shí),出租車離出發(fā)點(diǎn)有多遠(yuǎn)?在它的什么方向?
(2)若每千米收費(fèi)為2元,小明爸爸這個(gè)下午的營(yíng)業(yè)額是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABO的頂點(diǎn)A是雙曲線y1=與直線y2=-x-(k+1)在第二象限的交點(diǎn).AB⊥x軸于B,且S△ABO=.
(1)求這兩個(gè)函數(shù)的解析式;
(2)求△AOC的面積.
(3)直接寫出使y1>y2成立的x的取值范圍
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,點(diǎn)和三角形在同一平面內(nèi).
(1)如圖1,點(diǎn)在邊上,交于,交于.若,求的度數(shù).
(2)如圖2,點(diǎn)在的延長(zhǎng)線上,,,證明:.
(3)點(diǎn)是三角形外部的任意一點(diǎn),過作交直線于,交直線于,直接寫出與的數(shù)量關(guān)系(不需證明).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com