【題目】如圖,PA、PB分別與⊙O相切于點A、B,若∠P=50°,則∠C的值是( )
A. 50°B. 55°C. 60°D. 65°
【答案】D
【解析】
連接OA、OB,由已知的PA、PB與圓O分別相切于點A、B,根據切線的性質得到OA⊥AP,OB⊥PB,從而得到∠OAP=∠OBP=90°,然后由已知的∠P的度數,根據四邊形的內角和為360°,求出∠AOB的度數,最后根據同弧所對的圓周角等于它所對圓心角度數的一半即可得到∠C的度數.
解:連接OA、OB,
∵PA、PB與圓O分別相切于點A、B,
∴OA⊥AP,OB⊥PB,
∴∠OAP=∠OBP=90°,又∠P=50°,
∴∠AOB=360°-90°-90°-50°=130°,
又∵∠ACB和∠AOB分別是弧AB所對的圓周角和圓心角,
∴∠C=∠AOB=×130°=65°.
故選:D.
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,AB=3,BC=5,連接BD,∠BAD的平分線分別交BD、BC于點E、F,且AE∥CD
(1) 求AD的長;
(2) 若∠C=30°,求CD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】觀察下面三行數:
-3,9,-27,81,…;①
1,-3,9,-27,…;②
-1,11,-25,83,…;③
(1)第①行數按什么規(guī)律排列?第10個數是________;
(2)第②③行數與第①行數分別有什么關系?
(3)設x、y、z分別為第①②③行的第2018個數,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,E,F分別為AD,BC邊上的一點,增加下列條件,不能得出BE∥DF的是( 。
A. AE=CF B. BE=DF C. ∠EBF=∠FDE D. ∠BED=∠BFD
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,點E、F、G分別為邊AB、BC、CD的中點,若△EFG的面積為4,則四邊形ABCD的面積為( 。
A. 8 B. 12 C. 16 D. 18
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】己知二次函數y=ax2+bx+c的y與x的部分對應值如下表;
x | -1 | 0 | 1 | 3 |
y | -3 | 1 | 3 | 1 |
下列結論:①拋物線的開口向下;②其圖象的對稱軸為x=1;③當x﹤l時,函數值y隨x 的增大而增大;④方程ax2+bx+c=0有一個根大于4.其中正確的結論有( )
A. 4個B. 1個C. 3個D. 2個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(10分)如圖,在平面直角坐標系中,拋物線經過點A(0,4),B(1,0),C(5,0),其對稱軸與x軸交于點M.
(1)求此拋物線的解析式和對稱軸;
(2)在此拋物線的對稱軸上是否存在一點P,使△PAB的周長最小?若存在,請求出點P的坐標;若不存在,請說明理由;
(3)連接AC,在直線AC下方的拋物線上,是否存在一點N,使△NAC的面積最大?若存在,請求出點N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩車分別從、兩地同時出發(fā),甲車勻速前往地,到達地后立即以另一速度按原路勻速返回到地; 乙車勻速前往地,設甲、乙兩車距地的路程為(千米),甲車行駛的時間為時), 與之間的函數圖象如圖所示
(1)甲車從地到地的速度是__________千米/時,乙車的速度是__________千米/時;
(2)求甲車從地到達地的行駛時間;
(3)求甲車返回時與之間的函數關系式,并寫出自變量的取值范圍;
(4)求乙車到達地時甲車距地的路程.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(本題滿分8分)
如圖,點E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF與DE交于點O.
(1)求證:AB=DC;
(2)試判斷△OEF的形狀,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com