【題目】如圖,在 中, , ,將 繞點O沿逆時針方向旋轉(zhuǎn) 得到 ,連結(jié) ,求證:四邊形 是平行四邊形.
【答案】證明:∵在 中, , ,∴ ,結(jié)合圖形旋轉(zhuǎn)的性質(zhì)可知: , , , ,∴ ,∵ ,∴四邊形 是平行四邊形.
【解析】可以根據(jù)四邊形的一組對邊平行且相等來判定四邊形為平行四邊形.
【考點精析】利用平行四邊形的判定和圖形的旋轉(zhuǎn)對題目進行判斷即可得到答案,需要熟知兩組對邊分別平行的四邊形是平行四邊形:兩組對邊分別相等的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形;兩組對角分別相等的四邊形是平行四邊形;對角線互相平分的四邊形是平行四邊形;每一個點都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動了相同的角度,任意一對對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,對應(yīng)點到旋轉(zhuǎn)中心的距離相等.旋轉(zhuǎn)的方向、角度、旋轉(zhuǎn)中心是它的三要素.
科目:初中數(shù)學 來源: 題型:
【題目】乘法公式的探究及應(yīng)用.
(1)如圖1可以求出陰影部分的面積是 (寫成兩數(shù)平方差的形式);
(2)比較圖1、圖2兩圖的陰影部分面積,可以得到
乘法公式 (用式子表達);
(3)運用你所得到的公式,計算下列各題:
①(2m+n﹣p)(2m﹣n+p) ②10.3×9.7.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知BA=AE=DC,AD=EC,CE⊥AE,垂足為E.
(1)求證:△DCA≌△EAC;
(2)只需添加一個條件,即 ,可使四邊形ABCD為矩形.請加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,在△ABC中,∠BAC=2∠B,∠BAD=∠DAC.說明:∠BAD=∠B.
(2)如圖2,已知點E在BA延長線上,∠EAD=∠CAD,∠B=∠C.說明:AD∥BC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:拋物線y= (x-1)2-3 .
(1)寫出拋物線的開口方向、對稱軸;
(2)函數(shù)y有最大值還是最小值?并求出這個最大(。┲;
(3)設(shè)拋物線與y軸的交點為P,與x軸的交點為Q,求直線PQ的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,直線AB∥CD
(1)如圖1,點E在直線BD的左側(cè),猜想∠ABE、∠CDE、∠BED的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)如圖2,點E在直線BD的左側(cè),BF、DF分別平分∠ABE、∠CDE,猜想∠BFD和∠BED的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)如圖3,點E在直線BD的右側(cè),BF、DF分別平分∠ABE、∠CDE;那么第(2)題中∠BFD和∠BED的數(shù)量關(guān)系的猜想是否仍成立?如果成立,請證明;如果不成立,請寫出你的猜想,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,∠AOB=90°,點C在射線OA上,CD∥OE.
(1)如圖1,若∠OCD=120°,求∠BOE的度數(shù);
(2)把“∠AOB=90°”改為“∠AOB=120°”,射線OE沿射線OB平移,得O′E,其他條件不變,(如圖2所示),探究∠OCD、∠BO′E的數(shù)量關(guān)系;
(3)在(2)的條件下,作PO′⊥OB垂足為O′,與∠OCD的平分線CP交于點P,若∠BO′E=α,請用含α的式子表示∠CPO′(請直接寫出答案).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com