如圖,已知在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)坐標(biāo)為A(-3,7),
B(1,5),C(-5,3).
(1)將△ABC向下平移3個(gè)單位長度,得到△A′B′C′,再向右平移5個(gè)單位長度,得到△A″B″C″.在圖中分別作出△A′B′C′,△A″B″C″;
(2)分別寫出點(diǎn)A″、B″、C″的坐標(biāo);
(3)求△ABC的面積.
(1)如圖所示:












(2)點(diǎn)A〞,B〞,C〞的坐標(biāo)分別為:A〞(2,4),B〞(6,2),C〞(0,0);

(3)在圖上取三點(diǎn)D(6,0),E(6,4),F(xiàn)(0,4),
則四邊形ODEF為矩形,
∴S△ABC=S△A''B''C′′=S矩形ODEF-S△ODB″-S△BEA″-S△OFA″=4×6-
1
2
×6×2-
1
2
×4×2-
1
2
×4×2=10.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,方格中有一條可愛的小狗.
(1)若方格的邊長為1,則小狗的面積為______.
(2)畫出小狗向右平移9格后的圖形(不要求寫作圖步驟和過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,已知在Rt△ABC中,∠C=90°,BC=4,AC=4,現(xiàn)將△ABC沿射線CB方向平移到△A′B′C′的位置.若平移距離為3,求△ABC與△A′B′C′的重疊部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖分別表示甲、乙、丙三人由A地到B地的路線.
甲的路線為:A→C→B
乙的路線為:A→D→E→F→B,其中E為AB的中點(diǎn)
丙的路線為:A→I→J→K→B,其中J在AB上,且AJ>JB
若符號(hào)「→」表示「直線前進(jìn)」,判斷三人行進(jìn)路線長度的大小關(guān)系為( 。
A.甲=乙=丙B.甲<乙<丙C.乙<丙<甲D.丙<乙<甲

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)平面內(nèi),已點(diǎn)A(3,0)、B(-5,3),將點(diǎn)A向左平移6個(gè)單位到達(dá)C點(diǎn),將點(diǎn)B向下平移6個(gè)單位到達(dá)D點(diǎn).
(1)寫出C點(diǎn)、D點(diǎn)的坐標(biāo):C______,D______;
(2)把這些點(diǎn)按A-B-C-D-A順次連接起來,這個(gè)圖形的面積是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的位置如圖所示,點(diǎn)A′的坐標(biāo)是(-2,2),現(xiàn)將△ABC平移,使點(diǎn)A變換為點(diǎn)A′,點(diǎn)B′、C′分別是B、C的對應(yīng)點(diǎn).
(1)請畫出平移后的像△A′B′C′(不寫畫法),并直接寫出點(diǎn)B′、C′的坐標(biāo):B′______、C′______;
(2)若△ABC內(nèi)部一點(diǎn)P的坐標(biāo)為(a,b),則點(diǎn)P的對應(yīng)點(diǎn)P′的坐標(biāo)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知(x,y)、(x′,y′)分別表示△ABC、△A′B′C′的頂點(diǎn)坐標(biāo)且滿足關(guān)系:
x′=x-1
y′=y+1
,若△ABC在直角坐標(biāo)系中的位置如圖所示,則△A′B′C′的面積為( 。
A.3B.6C.9D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列說法正確的有( 。
①角平分線上任意一點(diǎn)到角兩邊的距離相等
②到一個(gè)角兩邊的距離相等的點(diǎn)在這個(gè)角的平分線上
③三角形三個(gè)角平分線的交點(diǎn)到三個(gè)頂點(diǎn)的距離相等
④三角形三條角平分線的交點(diǎn)到三邊的距離相等.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(1)班同學(xué)上數(shù)學(xué)活動(dòng)課,利用角尺平分一個(gè)角(如圖所示).設(shè)計(jì)了如下方案:
(Ⅰ)∠AOB是一個(gè)任意角,將角尺的直角頂點(diǎn)P介于射線OA、OB之間,移動(dòng)角尺使角尺兩邊相同的刻度與M、N重合,即PM=PN,過角尺頂點(diǎn)P的射線OP就是∠AOB的平分線.
(Ⅱ)∠AOB是一個(gè)任意角,在邊OA、OB上分別取OM=ON,將角尺的直角頂點(diǎn)P介于射線OA、OB之間,移動(dòng)角尺使角尺兩邊相同的刻度與M、N重合,即PM=PN,過角尺頂點(diǎn)P的射線OP就是∠AOB的平分線.
(1)方案(Ⅰ)、方案(Ⅱ)是否可行?若可行,請證明;若不可行,請說明理由;
(2)在方案(Ⅰ)PM=PN的情況下,繼續(xù)移動(dòng)角尺,同時(shí)使PM⊥OA,PN⊥OB.此方案是否可行?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案