【題目】如圖,點A是雙曲線在第一象限上的一動點,連接AO并延長交另一分支于點B,以AB為斜邊作等腰Rt△ABC,點C在第二象限,隨著點A的運動,點C的位置也不斷的變化,但始終在一函數(shù)圖象上運動,則這個函數(shù)的解析式為

【答案】y=-

【解析】

試題解析:連結(jié)OC,作CDx軸于D,AEx軸于E,如圖,

設(shè)A點坐標為(a,),

A點、B點是正比例函數(shù)圖象與雙曲線y=的交點,

點A與點B關(guān)于原點對稱,

OA=OB

∵△ABC為等腰直角三角形,

OC=OA,OCOA,

∴∠DOC+AOE=90°,

∵∠DOC+DCO=90°

∴∠DCO=AOE,

COD和OAE中

∴△COD≌△OAE(AAS),

OD=AE=,CD=OE=a,

C點坐標為(-,a),

-a=-4,

點C在反比例函數(shù)y=-圖象上.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某同學在利用描點法畫二次函數(shù)yax2+bx+ca0)的圖象時,先取自變量x的一些值,計算出相應(yīng)的函數(shù)值y,如下表所示:

x

0

1

2

3

4

y

3

0

1

0

3

接著,他在描點時發(fā)現(xiàn),表格中有一組數(shù)據(jù)計算錯誤,他計算錯誤的一組數(shù)據(jù)是( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C90°,AC5,以AB為一邊向三角形外作正方形ABEF,正方形的中心為O, ,則BC邊的長為_

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過點,,,點中點,連接、,并延長于點

1)求拋物線的表達式;

2)若拋物線與拋物線關(guān)于軸對稱,在拋物線位于第二象限的部分上取一點,過點軸,垂足為點,是否存在這樣的點,使得相似?若存在,請求出點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某汽車4S店銷售某種型號的汽車,每輛進貨價為15萬元,該店經(jīng)過一段時間的市場調(diào)研發(fā)現(xiàn):當銷售價為25萬元時,平均每周能售出8輛,而當銷售價每降低0.5萬元時,平均每周能多售出1輛.該4S店要想平均每周的銷售利潤為90萬元,并且使成本盡可能的低,則每輛汽車的定價應(yīng)為多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在四邊形ABCD內(nèi)接于O,ABACBDO的直徑,AEBD,垂足為點E,交BC于點F

1)求證:FAFB;

2)如圖2,分別延長AD,BC交于點G,點HFG的中點,連接DH,若tanACB,求證:DHO的切線;

3)在(2)的條件下,若DA3,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線yx22x軸交于AB(點A在點B右邊)兩點,和y軸交于點C,P為拋物線上的動點.

1)求出A,C的坐標;

2)求動點P到原點O的距離的最小值,并求此時點P的坐標;

3)當點Px軸下方的拋物線上運動時,過P的直線交x軸于E,若△POE和△POC全等,求此時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某賓館有若干間標準房,當標準房的價格為200元時,每天入住的房間數(shù)為60間,經(jīng)市場調(diào)查表明,該賓館每間標準房的價格在170~240元之間(含170元,240元)浮動時,每天入住的房間數(shù)(間)與每間標準房的價格(元)的數(shù)據(jù)如下表:

(元)

190

200

210

220

()

65

60

55

50

1)根據(jù)所給數(shù)據(jù)在坐標系中描出相應(yīng)的點,并畫出圖象.

2)求關(guān)于的函數(shù)表達式、并寫出自變量的取值范圍.

3)設(shè)客房的日營業(yè)額為(元).若不考慮其他因素,問賓館標準房的價格定為多少元時.客房的日營業(yè)額最大?最大為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市青少年健康研究中心隨機抽取了本市1000名小學生和若干名中學生,對他們的視力狀況進行了調(diào)查,并把調(diào)查結(jié)果繪制成如下統(tǒng)計圖.(近視程度分為輕度、中度、高度三種)

1)求這1000名小學生患近視的百分比.

2)求本次抽查的中學生人數(shù).

3)該市有中學生8萬人,小學生10萬人.分別估計該市的中學生與小學生患中度近視的人數(shù).

查看答案和解析>>

同步練習冊答案