【題目】某市青少年健康研究中心隨機抽取了本市1000名小學生和若干名中學生,對他們的視力狀況進行了調查,并把調查結果繪制成如下統(tǒng)計圖.(近視程度分為輕度、中度、高度三種)
(1)求這1000名小學生患近視的百分比.
(2)求本次抽查的中學生人數.
(3)該市有中學生8萬人,小學生10萬人.分別估計該市的中學生與小學生患“中度近視”的人數.
【答案】(1)這1000名小學生患近視的百分比為38%. (2)本次抽查的中學生有1000人. (3)該市中學生患“中度近視”的約有2.08萬人,患“中度近視”的約有1.04萬人.
【解析】
(1)這1000名小學生患近視的百分比=小學生近視的人數÷總人數×100﹪
(2)調查中學生總人數=中學生近視的人數÷中學生患近視的百分比
(3)用樣本估計總體,該市中學生患“中度近視”的人數=8萬×1000名中學生患中度近視的百分比;該市小學生患“中度近視”的人數=10萬×1000名小學生患中度近視的百分比
解:(1)∵(252+104+24)÷1000=38%,
∴這1000名小學生患近視的百分比為38%.
(2)∵(263+260+37)÷56%=1000(人),
∴本次抽查的中學生有1000人.
(3)∵8×=2.08(萬人),
∴該市中學生患“中度近視”的約有2.08萬人.
∵10×=1.04(萬人),
∴該市小學生患“中度近視”的約有1.04萬人.
科目:初中數學 來源: 題型:
【題目】已知直線l經過A(6,0)和B(0,12)兩點,且與直線y=x交于點C,點P(m,0)在x軸上運動.
(1)求直線l的解析式;
(2)過點P作l的平行線交直線y=x于點D,當m=3時,求△PCD的面積;
(3)是否存在點P,使得△PCA成為等腰三角形?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在下列正多邊形中,是中心,定義:為相應正多邊形的基本三角形.如圖1,是正三角形的基本三角形;如圖2,是正方形的基本三角形;如圖3,為正邊形…的基本三角形.將基本繞點逆時針旋轉角度得.
(1)若線段與線段相交點,則:
圖1中的取值范圍是________;
圖3中的取值范圍是________;
(2)在圖1中,求證
(3)在圖2中,正方形邊長為4,,邊上的一點旋轉后的對應點為,若有最小值時,求出該最小值及此時的長度;
(4)如圖3,當時,直接寫出的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題探究:
(1)如圖①,已知等邊△ABC,邊長為4,則△ABC的外接圓的半徑長為 .
(2)如圖②,在矩形ABCD中,AB=4,對角線BD與邊BC的夾角為30°,點E在為邊BC上且BE=BC,點P是對角線BD上的一個動點,連接PE,PC,求△PEC周長的最小值.
問題解決:
(3)為了迎接新年的到來,西安城墻舉辦了迎新年大型燈光秀表演.其中一個鐳射燈距城墻30米,鐳射燈發(fā)出的兩根彩色光線夾角為60°,如圖③,若將兩根光線(AB,AC)和光線與城墻的兩交點的連接的線段(BC)看作一個三角形,記為△ABC,那么該三角形周長有沒有最小值?若有,求出最小值,若沒有,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,在四邊形ABCD中,AB∥CD,∠B=90°,AB=2CD.動點P從點A出發(fā),在四邊形ABCD的邊上沿A→B→C的方向以1cm/s的速度勻速移動,到達點C時停止移動。已知△APD的面積S(cm 2)與點P運動的時間t(s)之間的函數圖象如圖②所示,根據題意解答下列問題
(1)在圖①中,AB= cm, BC= cm.
(2)求圖2中線段MN的函數關系式(并寫出t的取值范圍) .
(3)如圖③,設動點P用了t1 (s)到達點P1處,用了t2 (s)到達點P2處,分別過P1、P2作AD的垂線,垂足為H1、H2.當P1H1= P2H2=4時,連P1P2,求△BP1P2的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是弦,OD⊥AC于點D,過點A作⊙O的切線AP,AP與OD的延長線交于點P,連接PC、BC.
【1】猜想:線段OD與BC有何數量和位置關系,并證明你的結論.
【2】求證:PC是⊙O的切線
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】中國“蛟龍”號深潛器目前最大深潛極限為7062.68米.某天該深潛器在海面下1800米處作業(yè)(如圖),測得正前方海底沉船C的俯角為45°,該深潛器在同一深度向正前方直線航行2000米到B點,此時測得海底沉船C的俯角為60°.請判斷沉船C是否在“蛟龍”號深潛極限范圍內?并說明理由;(精確到0.01)(參考數據:≈1.414,≈1.732)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知四邊形ABCD是平行四邊形,AD=BD,過點D作DE⊥AB于點E,過點A作AH⊥BD于點H,交DE、BC分別于點F、G,連接CF.
(1)如圖1,求證:∠BAG=∠FCB;
(2)如圖2,過點A作AK平分∠DAF交ED于點K,若AK=1,∠FCD=45°,求DF的長;
(3)如圖3,若AD=10,DH=6,求CF的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com