【題目】如圖,在邊長(zhǎng)為1的小正方形網(wǎng)格中,點(diǎn)A、B、C、D都在這些小正方形的頂點(diǎn)上,連結(jié)CD與AB相交于點(diǎn)P,則tan∠APD的值是( )

A. 2 B. C. D.

【答案】A

【解析】

首先連接BE,由題意易得BF=CF,△ACP∽△BDP,然后由相似三角形的對(duì)應(yīng)邊成比例,易得DPCP=13,即可得PFCF=PFBF=12,在RtPBF中,即可求得tanBPF的值,繼而求得答案.

如圖,連接BE,


∵四邊形BCED是正方形,
DF=CF=CD,BF=BECD=BE,BECD,
BF=CF,
根據(jù)題意得:ACBD
∴△ACP∽△BDP,
DPCP=BDAC=13
DPDF=12,
DP=PF=CF=BF,
RtPBF中,tanBPF==2,
∵∠APD=BPF,
tanAPD=2

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解九年級(jí)學(xué)生體育測(cè)試情況,以九年級(jí)(1)班學(xué)生的體育測(cè)試成績(jī)?yōu)闃颖,?/span>A,B,C,D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制成如下的統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中所給信息解答下列問題:

(說明:A級(jí):90分~100分;B級(jí):75分~89分;C級(jí):60分~74分;D級(jí):60分以下)

1)請(qǐng)把條形統(tǒng)計(jì)圖補(bǔ)充完整;

2)扇形統(tǒng)計(jì)圖中D級(jí)所在的扇形的圓心角度數(shù)是多少?

3)若該校九年級(jí)有600名學(xué)生,請(qǐng)用樣本估計(jì)體育測(cè)試中A級(jí)學(xué)生人數(shù)約為多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角ABC中,A為直角,AB6,AC8.點(diǎn)PQ、R分別在AB、BC、CA邊上同時(shí)開始作勻速運(yùn)動(dòng),2秒后三個(gè)點(diǎn)同時(shí)停止運(yùn)動(dòng),點(diǎn)P由點(diǎn)A出發(fā)以每秒3個(gè)單位的速度向點(diǎn)B運(yùn)動(dòng),點(diǎn)Q由點(diǎn)B出發(fā)以每秒5個(gè)單位的速度向點(diǎn)C運(yùn)動(dòng),點(diǎn)R由點(diǎn)C出發(fā)以每秒4個(gè)單位的速度向點(diǎn)A運(yùn)動(dòng),用t(秒)(0≤t≤2)表示運(yùn)動(dòng)時(shí)間,在運(yùn)動(dòng)過程中:

1)當(dāng)t為何值時(shí),APR的面積為4;

2)求出CRQ的最大面積;

3)是否存在t,使PQR90°?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如下圖,已知⊙O的直徑為ABACAB于點(diǎn)A, BC與⊙O相交于點(diǎn)D,在AC上取一點(diǎn)E,使得ED=EA下面四個(gè)結(jié)論:①ED是⊙O的切線BC=2OE③△BOD為等邊三角形;④△EOD CAD,正確的是(

A. ①② B. ②④ C. ①②④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一面墻上有一個(gè)矩形的門洞,現(xiàn)要將它改為一個(gè)圓弧形的門洞,圓弧所在的圓外接矩形,已知矩形的高AC=2米,寬CD=米.

(1)求此圓形門洞的半徑;

(2)求要打掉墻體的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司銷售一批產(chǎn)品,進(jìn)價(jià)每件50元,經(jīng)市場(chǎng)調(diào)研,發(fā)現(xiàn)售價(jià)為60元時(shí),可銷售800件,售價(jià)每提高1元,銷售量將減少25.公司規(guī)定:售價(jià)不超過70.

(1)若公司在這次銷售中要獲得利潤(rùn)10800元,問這批產(chǎn)品的售價(jià)每件應(yīng)提高多少元?

(2)若公司要在這次銷售中獲得利潤(rùn)最大,問這批產(chǎn)品售價(jià)每件應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c過點(diǎn)A(﹣4,﹣3),與y軸交于點(diǎn)B,對(duì)稱軸是x=﹣3,請(qǐng)解答下列問題:

(1)求拋物線的解析式.

(2)若和x軸平行的直線與拋物線交于C,D兩點(diǎn),點(diǎn)C在對(duì)稱軸左側(cè),且CD=8,求△BCD的面積.注:拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸是x=﹣.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,BE=EF=FC,CG=2GD,BG分別交AE,AFMN.下列結(jié)論:①AFBG;②BN=NF;③;④.其中正確的結(jié)論的序號(hào)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC=10,點(diǎn)D是邊上一動(dòng)點(diǎn)(不與B,C重合),∠ADE=B=a,DEAC于點(diǎn)E,且cosa=,則線段CE的最大值為____.

查看答案和解析>>

同步練習(xí)冊(cè)答案