【題目】如圖,五個(gè)正方形面積分別記為S1,S2,S3,S4,S5,若S1=2,S3=3,S5=5,則S2+S4=_____.
【答案】13.
【解析】
根據(jù)全等三角形的判定定理得到△ABD≌△CEB,根據(jù)全等三角形的性質(zhì)得到AD=BC,AB=CE,根據(jù)勾股定理得到BD2=AD2+AB2=AD2+CE2,于是易得結(jié)論.
解:如圖,∵∠DAB=∠BCE=∠DBE=90°,
∴∠1+∠3=∠1+∠2=90°,
∴∠3=∠2,
在△ABD與△CEB中,
,
∴△ABD≌△CEB(AAS),
∴AD=BC,AB=CE,
∵BD2=AD2+AB2=AD2+CE2,
∴S2=S1+S3=5,
同理,S4=S3+S5=8,
∴S2+S4=13,
故答案為:13.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在3×3的方格中,點(diǎn)A、B、C、D、E、F都是格點(diǎn),從A、D、E、F四點(diǎn)中任意取一點(diǎn),以所取點(diǎn)及B、C為頂點(diǎn)畫(huà)三角形,所畫(huà)三角形是直角三角形的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖二次函數(shù) 的圖象經(jīng)過(guò)A(-1,0)和B(3,0)兩點(diǎn),且交 軸于點(diǎn)C.
(1)試確定 、 的值;
(2)若點(diǎn)M為此拋物線(xiàn)的頂點(diǎn),求△MBC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,則點(diǎn)A2 019的坐標(biāo)為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了比較市場(chǎng)上甲、乙兩種電子鐘每日走時(shí)誤差的情況,從這兩種電子鐘中,各隨機(jī)抽取10臺(tái)進(jìn)行測(cè)試,兩種電子鐘走時(shí)誤差的數(shù)據(jù)如下表(單位:秒):
編號(hào) 類(lèi)型 | 一 | 二 | 三 | 四 | 五 | 六 | 七 | 八 | 九 | 十 |
甲種電子鐘 | 1 | -3 | -4 | 4 | 2 | -2 | 2 | -1 | -1 | 2 |
乙種電子鐘 | 4 | -3 | -1 | 2 | -2 | 1 | -2 | 2 | -2 | 1 |
(1) 計(jì)算甲、乙兩種電子鐘走時(shí)誤差的平均數(shù);
(2) 計(jì)算甲、乙兩種電子鐘走時(shí)誤差的方差;
(3) 根據(jù)經(jīng)驗(yàn),走時(shí)穩(wěn)定性較好的電子鐘質(zhì)量更優(yōu).若兩種類(lèi)型的電子鐘價(jià)格相同,請(qǐng)問(wèn):你買(mǎi)哪種電子鐘?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為正方形,邊長(zhǎng)為4,點(diǎn)F在AB邊上,E為射線(xiàn)AD上一點(diǎn),正方形ABCD沿直線(xiàn)EF折疊,點(diǎn)A落在G處,已知點(diǎn)G恰好在以AB為直徑的圓上,則CG的最小值等于( )
A.0
B.2
C.4﹣2
D.2 ﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀小強(qiáng)同學(xué)數(shù)學(xué)作業(yè)本上的截圖內(nèi)容并完成任務(wù):
解方程組
解:由①,得,③ 第一步
把③代入①,得.第二步
整理得,.第三步
因?yàn)?/span>可以取任意實(shí)數(shù),所以原方程組有無(wú)數(shù)個(gè)解 第四步
任務(wù):(1)這種解方程組的方法稱(chēng)為 ;
(2)利用此方法解方程組的過(guò)程中所體現(xiàn)的數(shù)學(xué)思想是 ;(請(qǐng)你填寫(xiě)正確選項(xiàng))
A.轉(zhuǎn)化思想 B.函數(shù)思想 C.?dāng)?shù)形結(jié)合思想 D.公理化思想
(3)小強(qiáng)的解法正確嗎? (填正確或不正確),如果不正確,請(qǐng)指出錯(cuò)在第 步,請(qǐng)選擇恰當(dāng)?shù)慕夥匠探M的方法解該方程組.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在□ABCD中,BE⊥CD于點(diǎn)E,點(diǎn)F在AB上,且AF=CE,連接DF.
(1)求證:四邊形BEDF是矩形;
(2)連接CF,若CF平分∠BCD,且CE=3,BE=4,求矩形BEDF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某中學(xué)有一塊四邊形的空地ABCD,學(xué)校計(jì)劃在空地上種植草皮,經(jīng)測(cè)量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,問(wèn)學(xué)校需要投入多少資金買(mǎi)草皮?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com