【題目】□ABCD中,BECD于點E,點FAB上,且AF=CE,連接DF

(1)求證:四邊形BEDF是矩形;

(2)連接CF,若CF平分∠BCD,且CE=3,BE=4,求矩形BEDF的面積.

【答案】(1)證明見解析;(2)S矩形BEDF=20.

【解析】

1)根據(jù)有一個角是直角的平行四邊形是矩形證明即可;

2)利用等腰三角形的性質(zhì)求出BF即可解決問題.

(1)∵四邊形ABCD是平行四邊形,

AB=CDAB//CD,

AF=CE,

AB-AF=CD-CE,即BF=DE,

∴四邊形BEDF是平行四邊形,

又∵BECD,

∴∠BED=90°,

BEDF是矩形.

(2)CF平分∠BCD,

∴∠BCF=DCF

AB//CD

∴∠BFC=DCF,

∴∠BCF=BFC

BC=BF.

RtBCE中,BC==5.

BC=BF=5

S矩形BEDF=BFBE=5×4=20.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知⊙O的兩條弦AC,BD相交于點E,∠A=70o , ∠C=50o , 那么sin∠AEB的值為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,五個正方形面積分別記為S1,S2,S3,S4,S5,若S12S33,S55,則S2+S4_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在平行四邊形ABCD中,E,F是對角線BD上的兩點,且BFDE

求證:(1AECF;

2)四邊形AECF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC是邊長為6的等邊三角形,P是AC邊上一動點,由A向C運動(與A、C不重合),Q是CB延長線上一點,與點P同時以相同的速度由B向CB延長線方向運動(Q不與B重合),過P作PEAB于E,連接PQ交AB于D.

(1)當BQD=30°時,求AP的長;

(2)當運動過程中線段ED的長是否發(fā)生變化?如果不變,求出線段ED的長;如果變化請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】榮慶公司計劃從商店購買同一品牌的臺燈和手電筒,已知購買一個臺燈比購買一個手電筒多用20元,若用400元購買臺燈和用160元購買手電筒,則購買臺燈的個數(shù)是購買手電筒個數(shù)的一半.

(1)求購買該品牌一個臺燈、一個手電筒各需要多少元?

(2)經(jīng)商談,商店給予榮慶公司購買一個該品牌臺燈贈送一個該品牌手電筒的優(yōu)惠,如果榮慶公司需要手電筒的個數(shù)是臺燈個數(shù)的2倍還多8個,且該公司購買臺燈和手電筒的總費用不超過670元,那么榮慶公司最多可購買多少個該品牌臺燈?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,ABAC,AB=2,AC=4.對角線AC,BD相交于點O,將直線AC繞點O順時針旋轉(zhuǎn)α°,分別交直線BC、AD于點E、F.

(1)當α=   °,四邊形ABEF是平行四邊形;

(2)在旋轉(zhuǎn)的過程中,從A、B、C、D、E、F中任意4個點為頂點構(gòu)造四邊形.

①α=   °,構(gòu)造的四邊形是菱形;

若構(gòu)造的四邊形是矩形,求出該矩形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的袋子中裝有若干個除顏色外均相同的小球,小明每次從袋子中摸出一個球,記錄下顏色,然后放回,重復這樣的試驗1000次,記錄結(jié)果如下:

實驗次數(shù)n

200

300

400

500

600

700

800

1000

摸到紅球次數(shù)m

151

221

289

358

429

497

568

701

摸到紅球頻率

0.75

0.74

0.72

0.72

0.72

0.71

a

b

1)表格中a=________,b=_________;

2)估計從袋子中摸出一個球恰好是紅球的概率約為________;(精確到0.1

3)如果袋子中有14個紅球,那么袋子中除了紅球,還有多少個其他顏色的球?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題滿分8分)

為營造書香家庭,周末小亮和姐姐一起從家出發(fā)去圖書館借書,走了6分鐘忘帶借書證,小亮立即騎路邊共享單車返回家中取借書證,姐姐以原來的速度繼續(xù)向前行走,小亮取到借書證后騎單車原路原速前往圖書館,小亮追上姐姐后用單車帶著姐姐一起前往圖書館.已知單車的速度是步行速度的3倍,如圖是小亮和姐姐距家的路程y(米)與出發(fā)的時間x(分鐘)的函數(shù)圖象,根據(jù)圖象解答下列問題:

小亮在家停留了 分鐘.

求小亮騎單車從家出發(fā)去圖書館時距家的路程y(米)與出發(fā)時間x(分鐘)之間的函數(shù)關(guān)系式.

若小亮和姐姐到圖書館的實際時間為m分鐘,原計劃步行到達圖書館的時間為n分鐘,則n-m= 分鐘.

查看答案和解析>>

同步練習冊答案