【題目】《九章算術(shù)》是我國(guó)古代數(shù)學(xué)成就的杰出代表作,書中記載:“今有圓材埋壁中,不知大小.以鋸鋸之,深1寸,鋸道長(zhǎng)1尺,問(wèn)經(jīng)幾何?“其意思為:“如圖,今有一圓形木材埋在墻壁中,不知其大小用鋸子去鋸這個(gè)木材,鋸口深1寸(即DE1寸),鋸道長(zhǎng)1尺(即弦AB1尺),問(wèn)這塊圓形木材的直徑是多少?”該問(wèn)題的答案是_____(注:1尺=10寸)

【答案】26

【解析】

延長(zhǎng)CD,交⊙O于點(diǎn)E,連接OA,由題意知CE過(guò)點(diǎn)O,且OCABADBDAB5(寸),設(shè)圓形木材半徑為r,可知ODr1,OAr,根據(jù)OA2OD2+AD2列方程求解可得.

延長(zhǎng)CD,交⊙O于點(diǎn)E,連接OA

由題意知CE過(guò)點(diǎn)O,且OCAB,

ADBDAB5(寸),

設(shè)圓形木材半徑為r,

ODr1,OAr,

OA2OD2+AD2,

r2=(r12+52,

解得r13,

所以⊙O的直徑為26寸,

故答案為:26寸.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校八、九兩個(gè)年級(jí)各有學(xué)生180人,為了解這兩個(gè)年級(jí)學(xué)生的體質(zhì)健康情況,進(jìn)行了抽樣調(diào)查,具體過(guò)程如下:

  收集數(shù)據(jù)

從八、九兩個(gè)年級(jí)各隨機(jī)抽取20名學(xué)生進(jìn)行體質(zhì)健康測(cè)試,測(cè)試成績(jī)(百分制)如下:

八年級(jí)

78

86

74

81

75

76

87

70

75

90

75

79

81

70

74

80

86

69

83

77

九年級(jí)

93

73

88

81

72

81

94

83

77

83

80

81

70

81

73

78

82

80

70

40

整理、描述數(shù)據(jù)

將成績(jī)按如下分段整理、描述這兩組樣本數(shù)據(jù):

成績(jī)(x

40≤x≤49

50≤x≤59

60≤x≤69

70≤x≤79

80≤x≤89

90≤x≤100

八年級(jí)人數(shù)

0

0

1

11

7

1

九年級(jí)人數(shù)

1

0

0

7

10

2

(說(shuō)明:成績(jī)80分及以上為體質(zhì)健康優(yōu)秀,7079分為體質(zhì)健康良好,6069分為體質(zhì)健康合格,60分以下為體質(zhì)健康不合格)

  分析數(shù)據(jù)

兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差如表所示:

年級(jí)

平均數(shù)

中位數(shù)

眾數(shù)

方差

八年級(jí)

78.3

77.5

75

33.6

九年級(jí)

78

80.5

a

52.1

1)表格中a的值為______;

2)請(qǐng)你估計(jì)該校九年級(jí)體質(zhì)健康優(yōu)秀的學(xué)生人數(shù)為多少?

3)根據(jù)以上信息,你認(rèn)為哪個(gè)年級(jí)學(xué)生的體質(zhì)健康情況更好一些?請(qǐng)說(shuō)明理由.(請(qǐng)從兩個(gè)不同的角度說(shuō)明推斷的合理性)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算

1(xy)22x(xy);     2(a1)(a1)(a1)2;

3)先化簡(jiǎn),再求值:

(x2y)(x2y)(2x3y4x2y2)÷2xy,其中x=3,.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】RtABC,ACB=90°,AC=BC=2,點(diǎn)PBC邊上的一個(gè)動(dòng)點(diǎn)(不與B.C重合)點(diǎn)P關(guān)于直線AC、AB的對(duì)稱點(diǎn)分別為M、N,連接MNAC于點(diǎn)E,AB于點(diǎn)F.

(1)當(dāng)點(diǎn)P為線段BC的中點(diǎn)時(shí),求∠M的正切值

(2)當(dāng)點(diǎn)P在線段BC上運(yùn)動(dòng)時(shí)(不與B.C重合),連接AMAN,求證:

①△AMN為等腰直角三角形

②△AEF∽△BAM

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市最近開通了“1號(hào)水路觀光游覽專線,某中學(xué)數(shù)學(xué)活動(dòng)小組帶上高度為1.6m的測(cè)角儀,對(duì)其標(biāo)志性建筑AO進(jìn)行測(cè)量高度的綜合實(shí)踐活動(dòng),如圖,在BC處測(cè)得直立于地面的AO頂點(diǎn)A的仰角為30°,然后前進(jìn)20mDE處,測(cè)得頂點(diǎn)A的仰角為75°

1)求AE的長(zhǎng)(結(jié)果保留根號(hào));

2)求高度AO(精確到個(gè)位,參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,直線1y=﹣x+1x軸、y軸分別交于點(diǎn)B、點(diǎn)E,拋物線Lyax2+bx+c經(jīng)過(guò)點(diǎn)B、點(diǎn)A(﹣30)和點(diǎn)C0,﹣3),并與直線l交于另一點(diǎn)D

1)求拋物線L的解析式;

2)點(diǎn)Px軸上一動(dòng)點(diǎn)

①如圖2,過(guò)點(diǎn)Px軸的垂線,與直線1交于點(diǎn)M,與拋物線L交于點(diǎn)N.當(dāng)點(diǎn)P在點(diǎn)A、點(diǎn)B之間運(yùn)動(dòng)時(shí),求四邊形AMBN面積的最大值;

②連接AD,AC,CP,當(dāng)∠PCA=∠ADB時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2014山東淄博)如圖,四邊形ABCD中,AC⊥BDBD于點(diǎn)E,點(diǎn)F,M分別是AB,BC的中點(diǎn),BN平分∠ABEAM于點(diǎn)N,ABACBD,連接MFNF

(1)判斷△BMN的形狀,并證明你的結(jié)論;

(2)判斷△MFN△BDC之間的關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖1,在矩形ABCD中,AB2,BC5,∠MPN90°,且∠MPN的直角頂點(diǎn)在BC邊上,BP1

①特殊情形:若MP過(guò)點(diǎn)A,NP過(guò)點(diǎn)D,則   

②類比探究:如圖2,將∠MPN繞點(diǎn)P按逆時(shí)針?lè)较蛐D(zhuǎn),使PMAB邊于點(diǎn)E,PNAD邊于點(diǎn)F,當(dāng)點(diǎn)E與點(diǎn)B重合時(shí),停止旋轉(zhuǎn).在旋轉(zhuǎn)過(guò)程中,的值是否為定值?若是,請(qǐng)求出該定值;若不是,請(qǐng)說(shuō)明理由.

2)拓展探究:在RtABC中,∠ABC90°,ABBC2,ADAB,⊙A的半徑為1,點(diǎn)E是⊙A上一動(dòng)點(diǎn),CFCEAD于點(diǎn)F.請(qǐng)直接寫出當(dāng)△AEB為直角三角形時(shí)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB:BC=3:5,點(diǎn)E是對(duì)角線BD上一動(dòng)點(diǎn)(不與點(diǎn)B,D重合),將矩形沿過(guò)點(diǎn)E的直線MN折疊,使得點(diǎn)A,B的對(duì)應(yīng)點(diǎn)G,F分別在直線AD與BC上,當(dāng)△DEF為直角三角形時(shí),CN:BN的值為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案