【題目】已知等腰RtABC和等腰RtAED中,∠ACB=∠AED=90°,且AD=AC

1)發(fā)現(xiàn):如圖1,當(dāng)點(diǎn)EAB上且點(diǎn)C和點(diǎn)D重合時(shí),若點(diǎn)MN分別是DB、EC的中點(diǎn),則MNEC的位置關(guān)系是   ,MNEC的數(shù)量關(guān)系是   

2)探究:若把(1)小題中的△AED繞點(diǎn)A旋轉(zhuǎn)一定角度,如圖2所示,連接BDEC,并連接DBEC的中點(diǎn)M、N,則MNEC的位置關(guān)系和數(shù)量關(guān)系仍然能成立嗎?若成立,請以逆時(shí)針旋轉(zhuǎn)45°得到的圖形(圖3)為例給予證明位置關(guān)系成立,以順時(shí)針旋轉(zhuǎn)45°得到的圖形(圖4)為例給予證明數(shù)量關(guān)系成立,若不成立,請說明理由.

【答案】1;(2)成立,見解析.

【解析】

1)利用等腰直角三角形的性質(zhì)以及三角形中位線定理得出得出MNEC的位置關(guān)系和MNEC的數(shù)量關(guān)系;

2)首先得出△EDM≌△FBMSAS),進(jìn)而求出△EAC≌△FBCSAS),即可得出∠ECF=FCB+BCE=ECA+BCE=90°,進(jìn)而得出MNEC,再利用△EDM≌△FBMAAS),得出,MNEC的數(shù)量關(guān)系.

解:(1,理由如下:

∵當(dāng)點(diǎn)EAB上且點(diǎn)C和點(diǎn)D重合時(shí),點(diǎn)M、N分別是DB、EC的中點(diǎn),

MN是三角形BED的中位線,

MNBE,MN=BE,

∵等腰RtABC和等腰RtAED中,∠ACB=AED=90°,且AD=AC,

BE=EC,∠AED=90°,

MNEC的位置關(guān)系是:MNEC,MNEC的數(shù)量關(guān)系是:MN=EC,

故答案為:MNECMN=EC;

2,理由如下:

如下圖,連接EM并延長到F,使EM=MF,連接CMCF、BF,

BM=MD,∠EMD=BMF,

∴△EDM≌△FBMSAS),

BF=DE=AE,∠FBM=EDM=135°

∴∠FBC=EAC=90°,

ACBC,

∴△EAC≌△FBCSAS),

FC=EC, FCB=ECA,

∴∠ECF=FCB+BCE =ECA+BCE=90°

又點(diǎn)M、N分別是EF、EC的中點(diǎn)

MNFC,

MNEC,

再如下圖所示,連接EM并延長交BCF,

∵∠AED=ACB=90°,

DEBC,

∴∠DEM=BFM,∠EDM=MBF,

在△EDM和△FBM中,

,

∴△EDM≌△FBMAAS),

BF=DE=AE,EM=FM,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AC5,AB7,BC4,點(diǎn)D在邊AB上,且AD3,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長度的速度向終點(diǎn)B運(yùn)動(dòng),以PD為邊向上作正方形PDMN,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t,正方形PDMNABC重疊部分的面積為S

1)用含有t的代數(shù)式表示線段PD的長

2)當(dāng)點(diǎn)N落在ABC的邊上時(shí),求t的值

3)求St的函數(shù)關(guān)系式

4)當(dāng)點(diǎn)P在線段AD上運(yùn)動(dòng)時(shí),作點(diǎn)N關(guān)于CD的對稱點(diǎn)N,當(dāng)NABC的某一個(gè)頂點(diǎn)所連的直線平分ABC的面積時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2011山東濟(jì)南,27,9分)如圖,矩形OABC中,點(diǎn)O為原點(diǎn),點(diǎn)A的坐標(biāo)為(0,8),點(diǎn)C的坐標(biāo)為(6,0).拋物線經(jīng)過AC兩點(diǎn),與AB邊交于點(diǎn)D

1)求拋物線的函數(shù)表達(dá)式;

2)點(diǎn)P為線段BC上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)C重合),點(diǎn)Q為線段AC上一個(gè)動(dòng)點(diǎn),AQ=CP,連接PQ,設(shè)CP=m,△CPQ的面積為S

S關(guān)于m的函數(shù)表達(dá)式,并求出m為何值時(shí),S取得最大值;

當(dāng)S最大時(shí),在拋物線的對稱軸l上若存在點(diǎn)F,使△FDQ為直角三角形,請直接寫出所有符合條件的F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CB=CA,∠ACB=90°,點(diǎn)D在邊BC上(與B、C不重合),四邊形ADEF為正方形,過點(diǎn)FFG⊥CA,交CA的延長線于點(diǎn)G,連接FB,交DE于點(diǎn)Q,給出以下結(jié)論:①AC=FG;②SFAB:S四邊形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQAC,其中正確的結(jié)論的個(gè)數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與x軸交于A、B兩點(diǎn),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,-3),點(diǎn)P是直線BC下方拋物線上的一個(gè)動(dòng)點(diǎn).

(1)求二次函數(shù)解析式;

(2)連接PO,PC,并將POC沿y軸對折,得到四邊形.是否存在點(diǎn)P,使四邊形為菱形?若存在,求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請說明理由;

(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABPC的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角三角形ABC中,∠C90°,AC2,BC2,點(diǎn)O是邊AB上的一個(gè)動(dòng)點(diǎn),以點(diǎn)O為圓心,OA為半徑作⊙O,與邊AC交于點(diǎn)M

1)如圖1,當(dāng)⊙O經(jīng)過點(diǎn)C時(shí),⊙O的直徑是   ;

2)如圖2,當(dāng)⊙O與邊BC相切時(shí),切點(diǎn)為點(diǎn)N,試求⊙OABC重合部分的面積;

3)如圖3,當(dāng)⊙O與邊BC相交時(shí),交點(diǎn)為E、F,設(shè)CMx,就判斷AEAF是否為定值,若是,求出這個(gè)定值;若不是,請用含x的代數(shù)式表示.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一筆直的海岸線上有A,B兩個(gè)觀測站,AB的正東方向有一艘小船停在點(diǎn)P,A測得小船在北偏西60°的方向,從B測得小船在北偏東45°的方向,BP=6km.

(1)A、B兩觀測站之間的距離;

(2)小船從點(diǎn)P處沿射線AP的方向前行求觀測站B與小船的最短距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線lyx+1y軸于點(diǎn)A1,點(diǎn)A2,A3,…,An在直線l上,點(diǎn)B1,B2B3,…,Bnx軸的正半軸上,若△OA1B1,△A2B1B2,△A3B2B3,…,△AnBn1Bn依次均為等腰直角三角形,則點(diǎn)B1的坐標(biāo)是_____;點(diǎn)Bn的坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC為直角三角形,∠C=90°,BC=2cm,A=30°,四邊形DEFG為矩形,DE=2cm,EF=6cm,且點(diǎn)C、B、E、F在同一條直線上,點(diǎn)B與點(diǎn)E重合.RtABC以每秒1cm的速度沿矩形DEFG的邊EF向右平移,當(dāng)點(diǎn)C與點(diǎn)F重合時(shí)停止.設(shè)RtABC與矩形DEFG的重疊部分的面積為ycm2,運(yùn)動(dòng)時(shí)間xs.能反映ycm2xs之間函數(shù)關(guān)系的大致圖象是( 。

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案