【題目】代數(shù)式ax2+bx+c(a≠0,a,b,c是常數(shù))中,x與ax2+bx+c的對應值如下表:
x | ﹣1 | ﹣ | 0 | 1 | 2 | 3 | |||
ax2+bx+c | ﹣2 | ﹣ | 1 | 2 | 1 | ﹣ | ﹣2 |
請判斷一元二次方程ax2+bx+c=0(a≠0,a,b,c是常數(shù))的兩個根x1 , x2的取值范圍是下列選項中的( )
A.﹣ <x1<0, <x2<2
B.﹣1<x1<﹣ ,2<x2<
C.﹣ <x1<0,2<x2<
D.﹣1<x1<﹣ , <x2<2
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,邊長為6的正六邊形ABCDEF的對稱中心與原點O重合,點A在x軸上,點B在反比例函數(shù)y=位于第一象限的圖象上,則k的值為( 。
A.9
B.9
C.3
D.3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知AD∥BC,AB∥CD,E為射線BC上一點,AE平分∠BAD.
(1)如圖1,當點E在線段BC上時,求證:∠BAE=∠BEA.
(2)如圖2,當點E在線段BC延長線上時,連接DE,若∠ADE=3∠CDE,∠AED=60°.
①求證∠ABC=∠ADC;
②求∠CED的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖在平面直角坐標系中,A.B兩點的坐標分別為(﹣2,2),(1,8),
(1)求△ABO的面積.
(2)若y軸上有一點M,且△MAB的面積為10.求M點的坐標.
(3)如圖,把直線AB以每秒2個單位的速度向右平移,運動t秒鐘后,直線AB過點F(0,﹣2),此時A點的坐標為 ,B點的坐標為 ,過點A作AE⊥y軸于點E,過點B作BD⊥y軸于點D,請根據(jù)S△FBD=S△FAE+S梯形ABDE,求出滿足條件的運動時間t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是網(wǎng)格圖,每個小正方形的邊長均為1.△ABC它在坐標平面內(nèi)平移,得到△PEF,點A平移后落在點P的位置上.
(1)請你在圖中畫出△PEF,并寫出頂點P、E、F的坐標;
(2)說出△PEF是由△ABC分別經(jīng)過怎樣的平移得到的?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,對角線AC與BD相交于點O,不能判斷四邊形ABCD是平行四邊形的是( )
A.AB=DC,AD=BCB.AB∥DC,AD∥BC
C.AB∥DC,AD=BCD.OA=OC,OB=OD
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)的圖象如圖,對稱軸為x=1.若關于x的一元二次方程x2+bx﹣t=0(為實數(shù))在﹣1<x<4的范圍內(nèi)有解,則t的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知a=2019x+2018,b=2019x+2019,c=2019x+2020.則多項式a2+b2+c2﹣ab﹣bc﹣ac的值為( 。
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,拋物線與x軸交點坐標為A(1,0),C(-3,0),
(1)若已知頂點坐標D為(-1,4)或B點(0,3),選擇適當方式求拋物線的解析式.
(2)若直線DH為拋物線的對稱軸,在(1)的基礎上,求線段DK的長度,并求△DBC的面積.
(3)將圖(2)中的對稱軸向左移動,交x軸于點p(m,0)(-3<m<-1),與線段BC、拋物線的交點分別為點K、Q,用含m的代數(shù)式表示QK的長度,并求出當m為何值時,△BCQ的面積最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com